
Advanced Java
Programming

Ohad Barzilay,
Tel-Aviv University
Spring ‘06

Objects & Classes

Advanced Java Programming
Ohad Barzilay

2

Introduction to OOP

One of the ideas of object-oriented software
is to organized software in a way that
matches the thinking style of our object-
oriented brains.

Of course, at the machine level nothing has
changed - bit patterns are being changed by
machine instructions. But we don't have to
think about it that way.

Advanced Java Programming
Ohad Barzilay

3

Characteristics of Objects
An object has identity (it acts as a single
whole).

An object has state (it has various properties,
which might change).

An object has behavior (it can do things and
can have things done to it).

Advanced Java Programming
Ohad Barzilay

4

Software Objects

Many programs are written to do things that
are concerned the real world. It is convenient
to have "software objects" that are similar to
"real world objects."
Software objects will have identity, state, and

behavior just as do real world objects.
In this context we use the terms “problem
domain” and “software domain”

Advanced Java Programming
Ohad Barzilay

5

Objects
Software objects have identity because each is a separate
chunk of memory.

Software objects have state. Some of the memory that makes
a software object is used for variables which contain values.

Software objects have behavior. Some of the memory that
makes a software object is used to contain methods that
enable the object to "do things."

Advanced Java Programming
Ohad Barzilay

6

Classes
When a Java application is being run, objects are
created and their methods are invoked.

To create an object, there needs to be a description
of it.

A class is a description of a kind of object. A
programmer may define a class using Java, or may
use predefined classes that come in class libraries.

Advanced Java Programming
Ohad Barzilay

7

Creating Objects

A class is merely a plan for a possible object.

When a programmer wants to create an
object the new operator is used with the
name of the class. Creating an object is
called instantiation.

Advanced Java Programming
Ohad Barzilay

8

Creating Objects – The new
Operator

String name = new String(“Yoav”);

Turtle leonardo = new Turtle();

Point x = new Point (2,3);

Advanced Java Programming
Ohad Barzilay

9

Is Everything an Object?
Java is almost pure object oriented. The only things
which are not objects are primitive types (hence, the
name):

byte, short, int, long, float, double,
char, boolean

However, Java includes special classes of similar
names which are objects:

Byte, Short, Integer, Long, Float, Double,
Chararcter, Boolean

Advanced Java Programming
Ohad Barzilay

10

Primitive Data Types and
Classes

Java has many data types built into it, and you (as a
programmer) can create as many more as you want.

However, other than the primitive data types, all the
other data in a Java program will be represented as
an object.

Advanced Java Programming
Ohad Barzilay

11

Two kinds of variables

Primitive variable
Contains the actual data.
Used for primitive data types

Reference variable
Contains information on how to find the object
Used for all Objects

Advanced Java Programming
Ohad Barzilay

12

Reference Variables and Null

Since objects are big, complicated, and vary
in size you do not automatically get an object
when you declare an object reference
variable.

String name;
name = new String(“Dana");

Advanced Java Programming
Ohad Barzilay

13

Variables

Kind of
Variable Information it Contains When on the left of "="

primitive
variable Contains actual data. Previous data is replaced

with new data.

reference
variable

Contains information on
how to find an object.

Old reference is replaced
with a new reference

Advanced Java Programming
Ohad Barzilay

14

Several Objects of the same
class

strA = new String("The Gingham Dog");
strB = new String("The Calico Cat");

Advanced Java Programming
Ohad Barzilay

15

Equality of reference
The == operator is used to look at the contents of
two reference variables. If the contents of both
reference variables is the same, i.e, both variables
refer to the same object then the result is true.

The == operator does NOT look at objects! It only
looks at references (information about where an
object is)

Advanced Java Programming
Ohad Barzilay

16

Alias
strA = new String("The Gingham Dog");

strB = strA;

Advanced Java Programming
Ohad Barzilay

17

The equals method
The equals() method is used to determine
if two objects contain the same data.
Two Strings that are == are always
equals()

This holds for any 2 objects

Advanced Java Programming
Ohad Barzilay

18

Garbage Collection
An Object which has no reference to it is called
garbage.

Since a garbage object can not be referred to, it is a
waste of memory.

The java virtual machine must clear that unused
memory so it can be reused for creating other
objects. This process is called Garbage Collection

Advanced Java Programming
Ohad Barzilay

19

Garbage Collection

Garbage collection takes care of freeing the
memory storage.
The basic idea is storage reuse:

When an object is created the memory space is
allocated for this object.
Later if the object or data are not used the
memory is returned to the system for future reuse.

The JVM performs the garbage collection
periodically automatically.

Advanced Java Programming
Ohad Barzilay

20

Invoking an Objects method

Remember that an object consists of methods
(recipes for behavior.)

Java uses "dot notation“ for invoking methods. To
invoke the length() method of the object named
name the following is used:
int len = name.length();

Advanced Java Programming
Ohad Barzilay

21

Invoking an Objects method
Turtle leonardo = new Turtle();
leonardo.moveForward(50);
leonardo.turnRight(90);

Point p = new Point(0,0);
p.translate(2,3);

How can we know which methods can be
invoked for every object ?

Advanced Java Programming
Ohad Barzilay

22

API
(Application Programming Interface)

The API is a Specification of methods and
constructors in the class. It is the Documentation of
the class.

When we talk about defining are own classes we will
see how to generate API documentation.

Advanced Java Programming
Ohad Barzilay

23

LOGO Turtle

Advanced Java Programming
Ohad Barzilay

24

Turtle Documentation

Advanced Java Programming
Ohad Barzilay

25

Turtle Methods
show() Shows the turtle.
hide() Hides the turtle.
moveBackward(double) Moves the turtle backwards by a

given number of units.
moveForward(double) Advances the turtle forwards by a

given number of units.
tailDown() Lowers the tail of the turtle.
tailUp() Raises the tail of the turtle.
turnLeft(int) Turns the turtle counter-clockwise.
turnRight(int) Turns the turtle clockwise.

Advanced Java Programming
Ohad Barzilay

26

Using the Turtle
public class TurtleDrawing {

public static void main(String[] args) {
Turtle leonardo = new Turtle();
leonardo.tailDown();
leonardo.moveForward(100);
leonardo.turnLeft(90);
leonardo.moveForward(100);
// ...

}
}

Defining Classes

Advanced Java Programming
Ohad Barzilay

28

Container vs. Definition
Classes

Container classes:
A collection of static methods that are not bound to any
particular object.
These static methods usually have something in common.
Class as Module

Definition classes:
These classes define new objects, in a way that we will
soon see.
Class as Type

Advanced Java Programming
Ohad Barzilay

29

Classes As New Types

The class declaration is a way of defining
new types for your program – extending your
language “vocabulary”.
Once a class is declared you can use it to
declare object variables.
All those objects will be of the same type,
they will have the same data and the same
methods.

Advanced Java Programming
Ohad Barzilay

30

Container Class

The Math class is an example of the first
kind. It is a container for math utility methods:

Math.sqrt()
Math.abs()
Math.max()
...

Advanced Java Programming
Ohad Barzilay

31

Definition Class

The class Turtle is an example of the
second kind. It defines a new type of
objects, Turtle objects.

We will focus more on the second kind.

Advanced Java Programming
Ohad Barzilay

32

Defining Classes - Abstraction

Think of the object in its ideal form: what
does it represent? What behaviors it should
have?
It is often useful to think of a real-world
comparison, to help choose the name for the
class and its methods.
Often we include methods that we don’t
immediately need only because they make
sense for the abstraction of the object.

Advanced Java Programming
Ohad Barzilay

33

Objects and classes
A class is build of 4 parts:

1. Definition - class name;
2. Properties - instance and class variables;
3. Constructors - special methods for creating

objects
4. Methods - instance and class methods

Advanced Java Programming
Ohad Barzilay

34

Objects and Classes

A class is a description of a possible object.
The description is provided in code, therefore
we can only write classes.
An object is a unique runtime instance of a
class. Objects are located in the memory and
are created only when the program is
executed.

Advanced Java Programming
Ohad Barzilay

35

Object Oriented Programming

The programmer defines classes that
describe future objects that the program will
use when it is running.
As the program runs, The program does its
work by creating objects and activating their
methods.
Each class description can be used to create
many objects of the same type. A class is a
blue print for creating objects.

Advanced Java Programming
Ohad Barzilay

36

Syntax of class definition

class ClassName {
// description of variables

// constructors

// methods

}

Advanced Java Programming
Ohad Barzilay

37

Methods

A Java class contains one or more methods.

Each method is defined by its:
Visibility - (public / private / protected)
Return value (int / double / Point / void)
Arguments

Advanced Java Programming
Ohad Barzilay

38

Constructors

Objects must be initialized before they can be
used .We must specify what is the initial state
of the object before we can use it.
We specify the way an object is initialized
using a constructor, which is a special
method which is invoked every time we
create a new object.

Advanced Java Programming
Ohad Barzilay

39

Constructors
Each class has a constructor. It is the first
thing that is executed when creating an
object.
Constructors do not have a return type.
The constructor has the same name as the
class name.
It is possible to have more than one
constructor in a class, each constructor
differs in its arguments.

Advanced Java Programming
Ohad Barzilay

40

Calling the Constructor

Point p1 = new Point();
Point p2 = new Point(1,1);
Point p3 = new Point(p2);

Advanced Java Programming
Ohad Barzilay

41

Examples

Point
Segment
Complex
LinearFunction
Circle

Advanced Java Programming
Ohad Barzilay

42

Class Vs. Objects

Most of the data and methods reside and
work on specific objects of a class. The class
is only a blueprint used as object definition.
This view is not totally correct. There are
situations in which data and/or methods
reside in the class itself.

Advanced Java Programming
Ohad Barzilay

43

Static Data Members

Only one instance of a static variable exists
for the whole class. The value of the variable
is one for all instances.
The variable exist even before any objects of
the class are instantiated.
By default static variables are initialized to 0
or null.

Advanced Java Programming
Ohad Barzilay

44

Static Methods

Static methods can operate only on static
variables or call other static methods.
They are not connected to a specific instance
and therefore cannot use ‘this‘ reference.
Instance methods can access static
variables!

Advanced Java Programming
Ohad Barzilay

45

Static Method Call
The access to a static method is not done through
an object but through the class name itself:
float i = Math.random();
String s = String.valueOf(i);

If a static method calls another static method of the
same class than the class-name can be omitted.

Advanced Java Programming
Ohad Barzilay

46

The Main Method
The main method is static; it is invoked by
the system without creating an instance
object!

public static void main(String[] args);

Advanced Java Programming
Ohad Barzilay

47

A Collection of Static Methods

Even if no static variables exist static
methods can still be used to implement
general functionality. They just encapsulate a
given task, a given algorithm.
We can write a class that is a collection of
static methods. Such a class isn’t meant to
define new type of objects.
This class is more of a namespace or a
module

Advanced Java Programming
Ohad Barzilay

48

java.lang.Math

/**
* A library of mathematical methods.
*/
public class Math {

// Computes the trigonometric sine of an angle.
public static double sin(double x) {

// ...
}

// Computes the logarithm of a given number.
public static double log(double x) {

// ...
}
// ...

}

Advanced Java Programming
Ohad Barzilay

49

Use of Math Methods

It is just used as a library for utilities that are
related in some way:

double x = Math.sin(alpha);
int c = Math.max(a,b);
double y = Math.random();

API Documentation
Javadoc

Advanced Java Programming
Ohad Barzilay

51

Interface Definition

Your classes are often intended to be used
by other programmers. Even when we hide
implementation, we need to describe what a
class can do.
Programmers that use your class are not
interested in the implementation. They want
to use it as a whole and are only interested in
what it does and how to use it.

Advanced Java Programming
Ohad Barzilay

52

API Documentation

API (Application Programmer Interface)
documentation is a description of the
interface of the class intended for the
application programmer who wants to use it.
To use the class, we need not (and should
not) look at the code. All that is needed is the
class API.

Advanced Java Programming
Ohad Barzilay

53

Javadoc

The JDK contains a special tool for the
generation of API documentation for your
classes, called javadoc.

.java file .html file
javadoc

View using a

browser

Advanced Java Programming
Ohad Barzilay

54

Javadoc Process
javadoc takes as input Java programs and
automatically generates documentation
using:

The public method signatures
Any documentation which is part of the interface
begins with /** (double asterisk) and ends with */

The output is an HTML file which can be
viewed by an internet browser.

Advanced Java Programming
Ohad Barzilay

55

/**
* A clock representation class. Clock instances represent a point of
* time during the day in a precision of seconds.
*/

public class Clock {
// the hours, minutes and seconds read

private int hours, minutes, seconds;
/**
* Constructs a new clock, sets the clock to the time 00:00:00.
*/
public Clock() {

hours = 0;
minutes = 0;
seconds = 0;

}
/**
* Constructs a new clock, sets the clock to the specified time.
* @param hours The hours to be set (0-23)
* @param minutes The minutes to be set (0-59)
* @param seconds The seconds to be set (0-59)
*/
public Clock(int hours, int minutes, int seconds) {

setTime(hours,minutes,seconds);
}
// ...

}

javadoc

From Source File

Advanced Java Programming
Ohad Barzilay

56

To HTML Output

Advanced Java Programming
Ohad Barzilay

57

Clock Class Documentation

Advanced Java Programming
Ohad Barzilay

58

Directly from Eclipse

Advanced Java Programming
Ohad Barzilay

59

What Should You Comment?
You should put a documentation comment for
any member of the class which is part of its
interface and for the class itself.
All public constructors and methods should
documentation comments.
Private methods are not part of the interface
of the class, thus javadoc skips them by
default
You may ask javadoc to include also non-
public parts of the class

Advanced Java Programming
Ohad Barzilay

60

API Documentation Purpose

Documentation comments are written for
programmers who use your class as a whole.
They should describe only

What the class does,
How to use it.

Advanced Java Programming
Ohad Barzilay

61

API Documentation Style

Documentation comments should not
describe how a class is implemented.
Documentation comments should be

Short and descriptive,
Written in a simple language (ENGLISH),
Accurate.

Assume that the reader doesn’t know
anything about your class

Advanced Java Programming
Ohad Barzilay

62

API Documentation Tags
Documentation comments can also include tagged
paragraphs that give a standard way to document several
features of the interface such as method parameters, return
values, etc.
A tagged paragraph begins with the symbol @ followed with
a tag keywords. Tags: @see, @author, @version, @param,
@return, @exception.
Documentation comments text can include HTML tags (not
relevant for those who don’t know HTML).

Advanced Java Programming
Ohad Barzilay

63

Using Tags
@param to document every parameter in the method signature:
description, range limitiations, etc.
@return if the method returns a value:
/**
* Reads the next line in the file.
* @return A string containing the next line in the file,
* not including newline character at end (if exists).
*/
public String nextLine() {

// ...
}
@exception to document exceptions (later).

Advanced Java Programming
Ohad Barzilay

64

Naming

The names you use for your class and for its
public methods are part of the class API.
Good descriptive naming are crucial for a
clear API.
Read the style guidelines!

Advanced Java Programming
Ohad Barzilay

65

Changing the Implementation
Encapsulation allows us to change an
implementation of a class without affecting
other parts of the program.
Without encapsulation changes to
implementation might “break” the program
and lead to many further changes.
Why would we want to change the
implementation?

Different implementations have different tradeoffs
(e.g., Space conservation, efficiency etc.).

Advanced Java Programming
Ohad Barzilay

66

Non-API Comments

Java still uses the // and /* … */ style
comments
Those comments wouldn't be included in the
documentation – and they are used to clarify
certain parts of the code

If you have a complicate part in your code,
don’t document it – simplify it !

