Advanced Java Programming

Networking

Eran Werner and Ohad Barzilay

Tel-Aviv University

Advanced Java Programming, Spring 2006

Overview of networking

Advanced Java Programming, Spring 2006 2

TCP/IP protocol suite

Application
(HTTF, ftp, telnet ..

Transport
(TCP, UDP, .0

Metwork
(F, ...

Link

(device driver, ..

Advanced Java Programming, Spring 2006 3

TCP/IP protocol suite

L =" __FPpsatoel | FIP |
{ ertl SCIVRE |
f TCP: e el EIEF-FEHEBEEE - O O — - 'IT:F
. I i
router
IF protocal .IF N _| _________ _: IF pretoco] f
w e I ———.———E—E'*—a-l P
I ' : l |
] 1 |
i 1 ':
1 1
Ethernet L _Ethernet - Ethrernet | token ring 1 tolken ring -~ tpkern ring
drives pretosdl | driver | driver [T pretpeel driver
| L e =T mme " mmbmm o 1
i 1 i
rf'.'H’i"TEE
ioken ring,

Advanced Java Programming, Spring 2006 4

The Network and Link layers

The link layer:

* Handles movement of data across a physical link in a
network.

* Depends on the network type (Ethernet, Token-Ring).

* Also performs error checking on the arriving data

The network layer:
* Handles transmission of packets between two hosts.
* Uses the IP protocol.

* The packets travel in the net using IP addresses and
Routing Protocols.

Advanced Java Programming, Spring 2006 5

The Transport Layer

The two main transport protocols are TCP and UDP:
* TCP (Transmission Control Protocol):

— Emulates a reliable point to point stream of data
between applications, using IP and a port
number.

~ Tags each packet with a number and orders the
packets.

~ Retransmits lost packets.

Advanced Java Programming, Spring 2006 6

The Transport Layer

* UDP (Unreliable datagram protocol):

— Enables applications to send unreliable
packets of data (datagrams), with no
guarantees about order and arrival.

— Uses underlying IP and a port number.

Advanced Java Programming, Spring 2006 7

TCP vs. UDP

TCP is mostly used when application
needs reliability (which comes at a cost).
Most applications use TCP (telnet, FTP,
HTTP, SMTP etc).

UDP is used by applications which do
not want to pay the overhead of
slowdown by TCP and don’t need
reliability.

Advanced Java Programming, Spring 2006 8

Ports

A computer has a single physical connection
to the network. All arriving data goes
through this connection.

The data may be intended for different
applications that run on the computer.

How does the computer know to which
application to forward the data?

Advanced Java Programming, Spring 2006 9

Ports

Ports are 16-bit numbers used to map
incoming data to a process running on
the computer.

When sending data in the transport layer,
the port must be supplied together with
the IP address.

Advanced Java Programming, Spring 2006 10

Ports

Port numbers 0..1023 are reserved for
use by well-known services:

o FTP: 21
* Telnet: 23
o HT'TP: 80

Advanced Java Programming, Spring 2006 11

Application Layer Protocols
Hyper Text Transfer Protocol (HT'TP)

* Used between:

— Web clients (e.g. browsers)
and

— web-servers (Or proxies)
* Text based
* Build on top of TCP

* Stateless protocol

Advanced Java Programming, Spring 2006 12

HTTP Transaction

Client request:

* Sends request
GET http://www.cs.tau.ac.i1l/ HITP/1.0

* Sends header information
User-Agent: browser name

Accept: formats recognized by the browser
Host: www.cs.tau.ac.1l

* Sends a blank line (\n)
* (Can send post data

Advanced Java Programming, Spring 2006 13

HTTP Transaction (cont.)

Server response:

* Sends status line
HTTP/1.0 200 OK

* Sends header information
Content-type: text/html
Content-length: 302

* Sends a blank line (\n)

* Sends document data (if any)
Advanced Java Programming, Spring 2006 14

Working with URLs

Advanced Java Programming, Spring 2006 15

Using TCP 1in Java

The following Java classes all use
TCP:

« URL
« URLConnection
e Socket

« ServerSocket

Advanced Java Programming, Spring 2006 16

URL (Uniform resource locator)

Each information piece on the
Web has a unique identifying
address which is called a URL

A URL has two main components :

* Protocol identifier

* Resource name

Advanced Java Programming, Spring 2006 17

URL (Uniform resource locator)

The Resource names usually includes
—~ Host name
~ File name
~ Port number (Optional)
— Reference (Optional)

http://www.cs.tau.ac.il/cs/index.html

protocol host HLE

Advanced Java Programming, Spring 2006 18

URL

The java.net.URL class represents a URL.

Connecting to a URL involves parsing the
URL, resolving the protocol and path,
connecting to the host’s socket and
communicating with the server through the
protocol.

Java’s URL object does all that for you. You
need only construct a URL object, the parsing
is done by the URL class

Advanced Java Programming, Spring 2006 19

URL

Java will access the resource using the proper
protocol

All common protocols are supported, treating
an ftp, http, file are done the same

Using the factory pattern, different protocol
handlers are slipped behind the scenes to
handle communication with the server

Advanced Java Programming, Spring 2006 20

URL

A URL object is created in one of the
following ways:
* Using the full URL (string) of a resource.
* Using separate URL info:
- Protocol name
— Host name
— File name
- Port number

* Using another URL object and a name of a file
relative to it.

Advanced Java Programming, Spring 2006

21

URL

The URL details can later be
obtained from the URL object.

A MalformedURLException may
be thrown when creating a URL, if
the protocol is unknown or the
resource is not found.

Advanced Java Programming, Spring 2006 22

Reading directly from a URL

The following program reads from a URL and prints its
contents:

public class URLReader {
public static void main(String[] args) {
URL tau = new URL("http://www.cs.tau.ac.il/");
BufferedReader 1n = new BufferedReader(
new InputStreamReader(tau.openStream()));

String line;
while ((line = iIn.readLine()) !'= null)
System.out.printin(line);

in.close();

}
}

Advanced Java Programming, Spring 2006 23

Connecting to a URL

The openConnection() methods initializes a
communication link to the URL over the network.

The connection is represented using the
URLConnection object.

try {
URL tau = new URL('http://www.cs.tau.ac.il/");

URLConnection i1dcConnection =

tau.openConnection();
} catch (MalformedURLException e) {
// new URL() failed
} catch (10Exception e) {

// openConnection() failed

Advanced Java Programming, Spring 2006 24

Reading from a URL connection

The following program reads from a URL connection and
prints its contents:

public class URLConnectionReader {
public static void main(String[] args) {
URL tau = new URL('http://www.cs.tau.ac.i1l/");
URLConnection tauConnection = tau.openConnection();
BufferedReader in = new BufferedReader(
new InputStreamReader (tauConnection.getlnputStream()));

String i1nputLine;

while ((inputLine = in.readLine()) !'= null) {
System.out.printin(inputLine);

+

in.close();

}

}

Advanced Java Programming, Spring 2006 25

Writing to a URL connection

Many HTML pages use forms to enable
the user to enter data to be sent to the
server (e.g. login forms).

The browser writes the data to the URL
over the network.

Advanced Java Programming, Spring 2006 26

Writing to a URL connection

The server-side application receives the
data, processes it and sends a response
(usually an HTML page).

Using the getOutputStream() of the
URLConnection, a Java application can
write data directly to the server-side
application.

Advanced Java Programming, Spring 2006 27

Sockets

Advanced Java Programming, Spring 2006 28

URL & URLConnections

URLs and URLConnections provide a
relatively high-level mechanism for
accessing resources on the Internet.

Sometimes your programs require lower-
level network communication, for
example, when you want to write a client-
server application.

Advanced Java Programming, Spring 2006 AY

Client-Server model

A server provides some service. The clients
connect to the server and use this service.

When the communication channel needs to be
reliable then TCP i1s used, as follows:

* The client and the server programs establish a connection to
one another.

* Each program binds a socket to its end of the connection.

Advanced Java Programming, Spring 2006 30

What is a Socket ?

A socket is one end-point of a two-way
communication link between two programs
running on the network.

Sockets are an innovation of the Berkely UNIX.
The allow the programmer to treat the network
connection as yet another stream of bytes that
can be written to and read from.

Sockets shield the programmer from low level
details of network communication by providing
an abstraction at the process level.

Advanced Java Programming, Spring 2006 31

Socket Class

Socket classes are used to represent the
connection between a client program and a
server program.

Sockets can perform the following operations:
* Connect to a remote host
* Send data
* Receive data

* (Close a connection

Advanced Java Programming, Spring 2006 32

Reading and Writing from Sockets

A socket can hold an input stream and an
output stream

The streams are used to communicate
between the process, once the
communication is established is if they
were just like any other stream.

Advanced Java Programming, Spring 2006 33

Client-Server model (cont.)

Server side:

* The server has a socket that is bound to a specific port
number.

* The server listens to the socket for client requests.

Client side:

* The client knows the host name and port of the server.

* The client requests a connection from the server.

. tonnection

1 request

" i

Advanced Java Programming, Spring 2006 34

Client-Server model (cont.)

Server side:

* The server accepts the connection.

* The server bounds a new port and socket for the
communication with the new client.

5
i I: client
connectio E.______.--" i

* The client is assigned a new port in its local machine.

Client side:

* A socket is bounded to this port through which the client
communicates with the server.

Advanced Java Programming, Spring 2006 35

Sockets

The server waits, listening to the
socket for a client to make a
connection request.

Server
Lkl Port 1058

Advanced Java Programming, Spring 2006

36

Sockets

When a client wishes to communicate
with the server, the client sends a

rendezvous request to the server’s
address and port.

Server Connection Request
i swencR Port 1058
to: 128.65.23.19

port: 1058

Advanced Java Programming, Spring 2006 37

Sockets

Upon acceptance, the server gets a new socket
bound to a different port.

This is needed in order to continue serving other
clients on the original port.

Server onnection Acknowledged

on port: 12085
rt 120

Advanced Java Programming, Spring 2006 38

Sockets

On the client side, a new socket is
created, which is bound to a local port
number on the client machine.

Server
ek R Port 1058

O -

Advanced Java Programming, Spring 2006 39

Sockets in Java

The Java.net.Socket class implements one
side of a two-way connection between a Java
program and another program on the network.

The Socket class hides a platform-
dependent implementation. This enables Java
programs to communicate in platform-
independent fashion.

Advanced Java Programming, Spring 2006 40

Sockets in Java

Remember: a socket is a communication
channel between processes, therefore it
is defined by the pair of host name and
port number.

The Java.net.ServerSocket class
implements socket of a server.

This socket can listen for and accept
connections to clients.

Advanced Java Programming, Spring 2006 41

The Echo server example

The Echo server:

* This server just echoes any data sent to it by a client.

* This is a well known service on port 7 (Both TCP and UDP).

The Echo client:

* Wiaits for a textual user input from the standard input.
* When a line of text is entered, it is sent to the Echo server.

* The response of the Echo server is printed.

Advanced Java Programming, Spring 2006 42

The Echo client

import Java.io.*;
import Java.net.*;

public class EchoClient {
public =tatic void mwain(3tring[] asrgs) throws IOException |

Socket echoSocket = nmll;
FrintWriter out = null:;
BufferedReader in = nmll:

try {
Atring hostlame = args[0] !
echolocket = new Socket (hostMName, 7)) !
out = new PrintWriter (echolocket.getlutput3tream(), true) ;
in = new BufferedPReader inew InputitresunBeader |
echoZocket.getInput3tream()] ;

catch [(UnknownHostException =) |
aystem.err.printlni"unkown host") ;
avstem.exitc (1) ;

catch [(ICException =)

Sygtem.err.princtln("Couldn't get If0 Ffor
+ "the comnnection to host.");

System.exit (1) :
catch [(ArrayIndexOutOfEoundsException aiohe)] 1
Aystem.err.printlni"wrong u=sage: enter hostname") :

aystem.exit (1) ;

Advanced Java Programming, Spring 2006

The Echo client (cont.)

A establisk an input stream to read from the standard 1nput
BufferedReader input = new bufferedReader |

new InputitreamBeader (Systew.in));
-tring userlnput;

while [[(userlInput = input.readline()) '= nuall)

S writer line to output stream
out.printlnfuserInput);

/¢ print received echo result
ayatem.out.println("echo: " + in.readLine()):

S close streams and socket
out.closel();

ih.closel();

ihput.closel) ;
echolocket.closel) ;

Advanced Java Programming, Spring 2006

Writing the Server Side

* Servers set up a port and listen for client calls

e When a client connects the server establishes
input and output streams

* The Server communicates with the client
according to a protocol known to both sides

* The Server can handle clients sequentially
(one at a time while other clients wait)

* Or the Server can be multi-threaded and
handle multiple clients in parallel.

Advanced Java Programming, Spring 2006 45

java.net.ServerSocket

A ServerSocket can:

* Bind to a port
* Listen for incoming data

* Accept client connections on the bound port

Upon Connection the ServerSocket
establishes a regular socket on a different
port that will be used'to communicate
with the client

Advanced Java Programming, Spring 2006 46

ServerSocket methods

public ServerSocket (iInt port)
throws I10Exception, BindException

* Constructs a ServerSocket bound to a port

public Socket accept () throws I0Exception

* Blocks and'waits for.a client connection on the server’s port

Advanced Java Programming, Spring 2006 47

ServerSocket methods

public InetAddress getlnetAddress ()

* Returns the Internet Address used by the server

public 1nt getLocalPort ()

* Returns the port number used by the server

public vord close () throws I0Exception

* C(Close the server socket (not the socket)

Advanced Java Programming, Spring 2006 48

The Echo server

import Java.net.¥;
import Java.io. ¥ ;

class EchoSerwer |

public static void mwain(2tring[] args) |
serverSocket serverZfocket = nuall:

try |
Serverlocket = new ServerSocket (7))

y catch (IQException ioe)] |
avstem.err.println("Conldn't li=sten on port 7"):

avstem.exit (1) ;

Socket clientSocket = nmll:;

try |
clientZocket = serverlocket.accept(]) !

y catch (IQOException ioe] |
avstem.out.println("Accept failed: 7"):

avstem.exit (—1) ;

Advanced Java Programming, Spring 2006

The Echo server (cont.)

try {
PrintWlriter out =
new Printliriter (clienthocket.getOutputitream(), true);
BufferedReader in = new bBufferedReader|
new InputStreamBeader (clienthocket.getInputitreaml))) ;

String input = in.readLinel():
out.printlniinput);

out.closel();
in.closel();
clientiocket.closel() ;
serveriocket.closel()] ;
+ catch (IQException ioce) |
aystem.err.println("Couldn’t communicate with client'"):;

Advanced Java Programming, Spring 2006

Multiple clients

server application

port 5077

192.23.44.60

client application

200.17.77.12

client application

193.6.124.88

Advanced Java Programming, Spring 2006

o1

The Echo server: multiple clients

import Java.net. ;
import Java.io. *;

class MultiClientEchoSerwwer |

public static void main(3tringl[] args) |
Serveriocket serverZocket = nall:;
try
Sserverilocket = new Serverlocket (7))
¥y catch (IOException ioe)]
Syvstem.err.println("Couldn't listen on port 7"):
Syvstem.exit(—1) :

while (true)] |
try |
SJocket clientSocket = serverSocket.acocept (] :
EchoClientHandler handler =
new EchoClientHandler (client3ocket) ;
inew Threadihandler)) .starti(] :
+r catch (IOException ioe)] {1}

Advanced Java Programming, Spring 2006

The Echo server: multiple clients

We use an EchoClirentHandler to:

* Handles a connection of an
EchoCl1ent.

* Encapsulates the task of communicating
with the client in the “echo' protocol.

Advanced Java Programming, Spring 2006 53

The Echo server: multiple clients

class EchoClientHandler implements Funnabhle |
private Zocket client3ocket:
public EchoClientHandler (Jocket client3ocket)] |
this.client3ocket = clientlocket;
h
public void runi()] {
try |
PrintWriter out =
new PrintWriter(clientSocket.getoutputi3tream(), true) ;
BufferedReader in = new BufferedReader |
new InputitreamBeader (client3ocket.getInputitreatnl))) !

Atring input = null;
while ((input = in.readlLine()) '= null) { ./ read Ffrom the client
out.println(input) ; AOwrike ko client

out.clase(] ;
in.close () :
clientSocket.close () :
¥ catch (ICException ioe] |
Avstem.err.println("counldnt commmicate with client"):
avstem.exit(—1) :

Advanced Java Programming, Spring 2006

Protocols

The Client and Server should speak
the same protocol.

A protocol is a specification of the
syntax and interpretation of
messages that can be received at any
stage, and what are the possible
responses at any stage (state
diagram)

Advanced Java Programming, Spring 2006 55

What is a protocol?

06 7647834

Welcome to Mount Hermon
ski site. For ski conditions
press 1, for reservation of ski
package press 5, ...

5

Please select the type
of your credit card.
For Visa press 1, ...

Advanced Java Programming, Spring 2006 56

State full vs. Stateless protocols

The HTTP is an example of a stateless protocol:
when a client connects to a server, the server
carries out the request, sends the reply, and
does not retain any information about the
request.

State full servers maintain information about
clients between requests (e.g., shopping cart,
where the client is browsing, etc.)

Advanced Java Programming, Spring 2006 57

State full vs. Stateless Servers

State full servers: shorter request
messages, better performance, but
difficult to maintain correctly (what
happens if server crashes/client
crashes/ a message is lost?)

Stateless servers: fault tolerant - no
problem if client/server crashes, no
resource constraints (memory)

Advanced Java Programming, Spring 2006 58

Example - protocol knock knock

public class EnockEnockProtocol

private atic final int WAITING = 0;
private static final int SENTENCCEENCOCE = 1;
private static final int SENTCLUE = =
private static final int ANOTHER =

public 3t

Advanced Java Programming, Spring 2006 59

Protocol State diagram

‘e -ﬁ
/\

Advanced Java Programming, Spring 2006

Knock knock server

import java.net.*;
import java.io.*;

public class KnockEnockMultiServer /|

private static final int PORT = 4444;
public static wvoid main(String[] arg)

Serverlfocket serverfocket = null;

tryv |
serverfocket = new ServerSoclket (PORT)

v catch (IOException =)
Svstem.err.println ("could not connect server™) ;
e.print3tackTrace () ;

b

Socket connecticon = null;
while (true) |
try |
connection = serverSocket. accept ()
new Thread inew EncockEnockTaszk (connection)).start () ;
tcatch (IOException ioe) |
Svetem.err.printlniioce) ;
Svetem.exit (1) ;

Advanced Java Programming, Spring 2006

Knock knock

dmport Jawva. et 2
dmmport Jawva_ io. T2

public class HhnockErnockTask impleaments Pannahl e
private Socket comnmniectior;g

public FrnockEFrniockTa=slk [Socket Ccormnmriectiorld i
this_ connectiorn = Ccomlnmnectiorns

public woid riarll
try

BufferedPeadery i = mew BufferedPeader |
merr InputStreasmPeader (comnmniection. gecInpuatStresm ())) 2

Printiriter owt = mew Printclilriter imerw OutpuatStreamilriter |
comntiection. getdutcputStream ()) Etrwe) -

Striyxg i1nputLine [ouvubtpuktLine-

FrnockFEFrnockProtcocol protocol = mew FrnockFrnockProtocol () z

outputLine = protocol _processToput (muwll) -
ot _primntclnowvtpuatLiinie]) o

while ((inputLine = imn_ readLdirne (i) =l) {
outtputLine = protbcocol _processInpuat (drnpuatLine) -
ot _primtlrn{ouvutpuatLine) ;
AfjontcputLine. equal=y "EBye_ "1
break -
L
ot _cloas=(0 ;
inn.clo=s=1)
comtiection. claose ()
lcatch (IOExceptzion =1 |
Svwstem._ ot _primtlniie) -
Svw=stem._exit (1) -

Advanced Java Programming, Spring 2006

Knock knock client

public class FrnockEnockClient
public static wvoid maini(Stringl[] args) throws ITO0Exception |
Socket kkSocket = null;
PrintWritcer out = null;
BufferedPeader in = null;
try |
kkSocket = mew Socket (args[0], Integer._parselIntiargs[1]1)3):
out = mew Printliiritcer (kkSocket . getlOutputitream) ., truwe) ;
in = mew BufferedPeader (mew InputitreamPeader (EkSocket . gecInputitream () 1) 7
} catch (TnknomnHostException =)
SBystem.err. . printlni!"lon't know about host: " + args[0]11;
Svstem.exit(l)
I} catch (IOException =) |
System.err.println"Couldn't get If0 for the conmection to: " + args([0]);

Svstem.exiti(l);

BufferedPeader stdln = mew BufferedPeader (new InputStreamPesader (Svwstem.in)) ;

String fromSerwver:
String fromUser;

while {((fromferver = in.readline()) !'= mull) {

Svstem. ot _printlni"Server: " 4+ fromBSerwver) ;

if (fromfSerwver_equals("Bya_ "))
break;

fromUser = =tdIn.readlinei();

if (fromUUser != null)] {
Svystem. out _println({"Client: " 4+ fromUser);
out _println fromUser) ;

}

out _close()
in.close () ;
stdIn.closei) -
EkSocket _ clase () ;

Advanced Java Programming, Spring 2006

Datagrams

Advanced Java Programming, Spring 2006 64

Using UDP in Java

UDP provides a fast, non-reliable communication
over the internet.

In UDP:

* Applications send datagrams to one another.

* A connection between the applications is not maintained.

A datagram:

* Anindependent, self-contained message sent over the
network.

* The arrival, arrival time and contents are not guaranteed.

Advanced Java Programming, Spring 2006 65

Using UDP in Java

The following Java classes all use
UDP:

= DatagramPacket
= DatagramSocket
= MultrcastSocket

Advanced Java Programming, Spring 2006 66

The Date Server example

The following example shows a client-server
application that uses UDP.

The Date server:

* Continuously receives datagrams over a datagram socket.
* Each received datagram indicates a client request for a the date

* The server replies by sending a datagram that contains the
current date.

Advanced Java Programming, Spring 2006 67

The Date Server example

The Date client:

* Sends a single datagram requesting for the date.

* Waits for the server to send a datagram in
response.

* Prints the received date.

Advanced Java Programming, Spring 2006 68

The Date Server

import
import
import
import Java.util.Date;

public class DatefServer |
public static woid main(String[] args) throws IQException |
new Threadinew ZendDateTaski()l).s t

Advanced Java Programming, Spring 2006 69

class BendDateTask implements Runnable(

private static final int PORT NUMBER = 885395;
protected DatagramSocket =ocket = null;
protected BufferedReader in = null;

private Random random = new Random () ;

public SendDateTask () throws IOException |
socket = new DatagramBocket (PORT NUMEER) ;
I

public woid runi() {
try |
while (true) |

byte[] buf = new byte[Z25A]; /7 ocreate buffer for packet
DatagramPacket packet = new DatagramPacket (buf, Z5&);
socket. recelve (packet) ; S/ walt for client’s packet
String date = new Date().toString();

buf = date.getBvtes () ; /7 copy number to packet

S/ ocreate a new datagram with the client’s IP address and port
InetAddress address = packet.getAddress ()

int port = packet.getPort ()

packet = new DatagramPacket (buf, buf.length, addre=ss, port):
socket.zend (packet) ; A4 send packet to client

i
i catch (IOException e) {1}

Advanced Java Programming, Spring 2006

The Date client

import java.net.*;
import java.io.*;

public class DateClient |

private static final String HOST NAME = "localhost™;
private static final int PORT NUMBER = B8Y9;

public static void main(3tring[] args) throws IOException |
DatagramBocket =socket = new DatagramSocket();
byte[] buf = new byte[Z5A]; // prepare empty packet
InetAddress address = InetAddress.getByName (HOST NAME) ;
DatagramPacket packet =
new DatagramPacket (buf, buf.length, address, PORT NUMEER);
socket.send (packet) ; // send packet to server
packet = new DatagramPacket (buf, buf.length);
socket. receive (packet); // walt for packet from server
int len = packet.getLength();
String received = new String(packet.getData()).substring(l,len); // extract date
System.out.println("date received: ™ + received);
gocket,close () ;

Advanced Java Programming, Spring 2006

Lost packets

Since UDP is unreliable, packets can be lost:
* On the way to the server

* On the way back to the client

This means that the client’s line
socket.receive(packet); (waiting for the server’s
response) may wait forever.

The client should set a timer, and retransmit if no
response arrives in reasonable time.

Advanced Java Programming, Spring 2006 72

Broadcasting to multiple recipients

Assume that we want the server to broadcast packets to
multiple recipients.

Instead of sending dates to a specific client, the server
should:

* Send the date to a group of clients.
* Send the dates at a regular time interval.

A group of clients is defined by an InetAddress object,
constructed with a reserved IP (e.g. 230.0.0.1).

The time interval can be achieved using the Thread.sleep()
method.

Advanced Java Programming, Spring 2006 73

Broadcasting to multiple recipients

Instead of sending a request, the client
should:

Not send anything to the server.

Create a MulticastSocket object with the server’s
port number.

Register as a group member using the
joinGroup() method of the MulticastSocket.

Passively listen for the time from the server.

Advanced Java Programming, Spring 2006 74

Multicast Server

public clasg MualtiDateSerwer |
private Datagramfocket =socket
private boolean broadcast = true:
priwvate String group = "ZI0_0_0_1";
private int portc = 4445
private int delay = Z000;

public wvwoid start ()] throws Exception]
DatagramPacket packet
Inetiddre=s=s addres=s = Inetlbddress_. getByName{group) ;-
socket = new DatagramSocket (port) ;-
while (broadcast) |
try |
byte[] buf = new byte[Z5c] ;2
String diEtrinng = merwr Date () _toStrirngi) ;
buf = dA3tring. getBytesi) ;-

packset = mewr DatagramPacket (lbuf, buf. length, address,

socket . send (packet) ;
} catch (I0Exception =) |
broadcast = falszse;

}

try|
Thread. sleep (delay) ;

} catch (InterruptedException =)
Swstem.exitc (0] -

}

sockett . closel) ;

}

public =static wvwoid wain(Stringl[] args) thyows Exceptiornd
MaltiDateSerwver servwey = merwr MaltiDateSerwer i) ;
server . start () ;

Advanced Java Programming, Spring 2006

port) ;

Multicast Client

import Jjava.io.*;
import Jjava.net.*;

public class MultiDateClient
public static wvoid main(String[] args) throws IOException |
String groupIP="230.0.0.1";
int port = 444§5;
Multicastlocket =zcocket = new Multicastlocket (port)
InethAddre=s=s group = Inetdddress.getByName (groupIP) ;
socket. joeinGroup (group) ;
DatagramPacket packet;
for (int 1 = 0; 1 < 5; i++){
byte[] buf = new bytel[Z5a8]:
packet = new DatagramPacket (buf, buf.length);:
socket. receive (packet) ;
buft = packet.getDatal) ;
int len = packet.getLengthi):
String received = new Stringi{buf).substringi{l, len) :;
Svstem. out. println ("Todays date: ™ 4+ received):

Advanced Java Programming, Spring 2006

Time Server - TCP
Defined in RFC 867 - listens to port 13

1 T pLULULU1

private static 3tring getierverTine (3tring hostName)
throws I0Exception, UnknownHostException |
Jocket timesocket = new osocket (hostlNawe, TIME PORT);

BufferedReader reader = new BufferedReader|

ney Input>treamPeader (timedocket.getInputitream())),

Jtring serverTime = reader.readLine();
Limesocket.close();
return serverTile;

Advanced Java Programming, Spring 2006 77

Time Server - UDP
Defined in RFC 867 - listens to port 13

private static String getlerverTime (3tring hostName)
throws I0Exception, UnknownHostException |

iyName (hostlame) ;
DatagramPac . pac . i Dat: acket (buf, buf.length, address, TINE PORT);
socket.send(ps

2. = new DatagramPacket (bhuf, buf.length);

socket.receive (packet) ;

EufferedReader input = new BufferedReader (new InputitreamBeader|
new EytelrravInputitreampacket.gethatail)l));

input.readLine (] ;
LlDEEi];

return gerverTime:

Advanced Java Programming, Spring 2006 78

Monitor Server - Prints
Connecting Client Information

import java.net.*;
import java.io.*;

public class MonitorServer |
public static wvoid main (S$tring[] args) throws IOException {

ServerSocket zerverSocket = new ServerSocket (Integer.parselnti{args([0]));
while (true) |

Socket socket = serverSocket.accepti):

String hostAddress = socket.getInetiddress().getHosthAddress();

string hostlame = socket.getInetAddress().getHostName();

int port = socket.getPorti():;

System.out.println(" ")

system.out.println("Connection Established");

system.out.printlin("eclient address: " + hostAddress);
System.out.println{"elient name: " + hostName);
{
{

System.out.println(™elient port: " + port);
System.out.println(® \n\n");

Advanced Java Programming, Spring 2006

Properties Protocol

A state

HEpatter

= =

public =static String FINLL ME LZE = "BYE"
private Properties properties

private =tatic Propertie=sFrot ol instance

private PropertiesFProtc
Propertic=s=s

if (instance
instan

Advanced Java Programming, Spring 2006 80

Properties Protocol

'.-":-i-:-li-
= mprocess the client ipnputs returps 2 string result for the input
=
public String processInput (String input)] {
if [(input.edqualsIgnoreCase("1i=st")1) {
return liztPropertie=si() :

H
if (input.equalsIgnoreCase (FINLL MEIZLAGE]) |

return FINAL_HESSAGE;

H
String wvalue = properties.getProperty(input)

if [(value == muall)
return "no =uch property " 4+ input:
H

return value;

A returns a2 String of 211 properties seperated by 2 sendcolon
private String listPropertie= (1 {
StringBuffer buffer = new 2StringBuffer () :
Enumeration enun = properties.keva() :
while (enwuwm. hasMoreElements(11 1
String next = [(String)lenum.nextElement ()
buffer .appendinext]) ;
buffer . .append (" "] :

K
return buffer.tolString ()

Advanced Java Programming, Spring 2006

Properties Server

import Java.net. ¥
import Java.io. ¥

J_.-":-(-:-(-
= A Server that responds to client gueries about the server' asvstem properties
=g

public class Propertieslerver i
private static £inal int PORT = 4444;
public =tatic void maini(3tringl[] ardl

Serverlocket serwverlocket = nmuall:
try |
serverdocket = new Serverbocket (PORT) ;
+ catch (ICException =1
Svstem.err.printlni("could not comnnect server"):
e.print3tackTrace (]
H
Socket connection = nuall:
while (true) |
try i
A For ervery client accepied handle conversation in & new thiread
connection = serwverZocket.acocept ()
new Threadinew PropertiezTaskiconhnection)) .stcart ()
tcatch [(ICException ioel |
Svstem.err.printlniioes) ;
Svstem.exit (1) :

Advanced Java Programming, Spring 2006

Properties Server

A Elkis olaess Landlaes the task of @ conversadion witlh: @ singlse oliesnd

clags Propertie=Task implements Punnahbhle |

private Socket comnnectiong

J_r':l‘:l‘
Comstrucks @ FProperdissTask For the oiven
*
public PropertiesTask (Socket conmniection) |
this. conhectioln = conhtiection;

Soakalt compnec kion

berforms thhe conversabionn wikl: ke olispd wpadkill fhe seprver sepds & BFE .

i

public woid i) {

try 1
BufferedPeader in = mew BufferedPeader |

new InputStreamPeader (connection. getInputStream ()) ;

PrintWriter out = mnew Printilriter (mew OubputStcreamiiriter |

connection. getlutcputScream|)) ,true)
String inputLine, outputLine;
PropertiesProtocol protocol = PropertisesProtocol. getlInstancel) ;
while ({inputLine = in-readLline()) !=smull) {

coutputLine = protbocol_processInpuat (inputLine) ;
ot _printlnioutputLine) ;
if(outputLine_equals{PropertiesProtocol FIMAL MESZAGE))

break;

}

A alosae s5Ereans 2ad sockak

ot _clase ()
in.closel ;
comntiection. clase)
tcatch (IOException =) {
Serstem_ out . printlni=) ;

Advanced Java Programming, Spring 2006

OS5 S5 2 ore

