Object-Oriented
Programming with Java

Recitation No. 7:

Creational/Sharing Design
Patterns and Reference Objects

Design Patterns

Known solutions to common problems
Be aware of tradeoffs

Patterns that you are familiar with:
—actory

terator

Proxy

Composite

May 8, 2005 Oranit Dror

Creational and Sharing Patterns

Factory

Abstract Factory
Singleton

Enumeration

Immutability and Interning
Flyweight

Object Pool

Others...

May 8, 2005 Oranit Dror

Factory

The new operator gets a class name,
(no an interface or abstract class):

VersionedString vstring = new
LinkedVersionedString();

A factory method returns one of several
classes with the same interface or
super-class

May 8, 2005 Oranit Dror

Factory (cont.)

VersionedString vstring =
VersinedStringHactory.construct();

interface
VersionedString

] W

/ \

constructs different
instances of VersionedString

May 8, 2005 Oranit Dror

Abstract Factory

Useful for creating families of related objects
without specifying their concrete classes

Example: An application for building cars

May 8, 2005

builds various types of cars:
Hundai-Accent, Peuget 205 GTI, Fiat-Uno etc.

all cars have the same overall structure,
l.e. consist of the same components:

engine, wheels, brakes etc.
The components are different.

Oranit Dror

Abstract Factory (cont.)

CarBuilder

A

abstract | CarFactory

createEngine() abstract | Wheel
createWheel())

/

Client

A

A

FiatUnoWheel |---| HundaiAccentWheel

A

HundaiAccentFactory |- = | FiatUnoFactory

A

- : abstract | Engine
createEngine() createEngine())

createWheel() createWheel()

v | |

FiatUnotEngine |- --| HundaiAccenEngine

A

May 8, 2005 Oranit Dror

Isolates concrete classes
Exchanging product families Is easy
Promotes consistency among products

Supporting new kinds of products
Involves changing the AbstractFactory
class and all of its subclasses.

Typically implemented as a singleton.

May 8, 2005 Oranit Dror

Singleton

Ensures a class has only one instance
and provides a global access point to It.

public class Logger {

private static final Logger instance = new Logger();

private Logger() {...}
public static Logger getlnstance() {

return 1nstance;

h
h

May 8, 2005 Oranit Dror

Singleton (cont.)

public class Logger {

private static Logger instance;

private Logger() {...}
public static Logger getlnstance() {
it (instance == null)

instance = new Logger();

Lazy evaluation

return instance; (not thread-safe)

b

May 8, 2005 Oranit Dror

Enumer ation

Enforces a final set of instances and
provides a global access point to them.

public final class Boolean ... {

public static final Boolean FALSE = new Boolean(false);
public static final Boolean TRUE = new Boolean(true);

// Constructor

public Boolean(boolean value) {...}
// Factory Method

public static Boolean valueOf(boolean b) {...}

b

May 8, 2005 Oranit Dror

Enumer ation (cont.)

public final class Boolean ...{
public static final Boolean FALSE = new Boolean(false);
public static final Boolean TRUE = new Boolean(true);

public Boolean(boolean value) {...}

_‘ private
static Boolean valueOf(boolean b) { Is better

return (b ? Boolean. TRUE : Boolean.FALSE);

May 8, 2005 Oranit Dror

| mmutability

Cannot be changed after creation
A thread-safe

Examples: Java Strings, Integers
All fields are private

Declared as final

No methods that change the fields

A method that changes the attributes should
return a new instance:

public String String.toUpperCase();

May 8, 2005 Oranit Dror

|nterning

Reuses existing objects
Reduces the number of class instances
Permitted only to immutable objects

Example:
public String String.intern();

May 8, 2005 Oranit Dror

|nterning (cont.)

Representing an image as an array of
pixels, each of which is a color

Y
— / Many pixels
Color Pool | A few colors
A—/
B OO

Canonical Color objects

May 8, 2005 Oranit Dror

|nterning (cont.)

-

public final class Color {

private static Map colors = new HashMap();

private Color (int rgb) {...}

Factory

public static Color getColot(int rgb) { <O
method

it (colors.containsKey(rgb))
return (Color) colors.get(rgb);

Color color = new Color(rghb);
colors.put(rgb, color);
return colot;

b

May 8, 2005 Oranit Dror

Flyweght

A generalization of interning
Reuses existing objects

Useful when class instances can share
most of their fields:

Intrinsic fields (can be shared)
Extrinsic fields (variable)

May 8, 2005 Oranit Dror

Flyweight (cont.)

Use objects to represent documents,
pages, lines, tables, images, etc.
What about representing each character
by an object?

A flexible representation

The nailve design requires huge memory

May 8, 2005 Oranit Dror

Flyweight (cont.)

The naive design (memory consuming):

class Character ... {

extrinsic — private 1int X, y; Most characters in a
. private char c; / document use the same
: : : size, font, color etc.
private int s1ze; Thus, can be shared.

intrinsic 9 private Font font;
. private Color color;

.c.l.raw() {...}

b

May 8, 2005 Oranit Dror

Flyweight (cont.)

A better design:

The class Is broken into two classes:

a class that holds the intrinsic fields
(the flyweight class)

The original class holds the extrinsic
fields and a reference to the flyweight.

The flyweight class Is interned

May 8, 2005 Oranit Dror

Flyweight (cont.)

The Flyweight class:

final class CharacterAttributes {
private char c;
private int size;
private Font font;
private Color color;

draw(int x, inty) {...}

b

May 8, 2005 Oranit Dror

Flyweight (cont.)

The original class:

class Character ... {

If possible, it is better
to remove these fields

private int X, y;
CharacterAttrbutes attributes;

Character(int x, int y, char c, int size, Font font, Color color) {

attributes = CharacterAttributeFactory.construct(c, size, font, color);

b
draw() {
attributes.draw(x,y);
} Holds a pool of shared
! CharacterAttributes objects.

May 8, 2005 Oranit Dror

Flyweight (cont.)

A better approach (if possible):

final class Character ... {

May 8, 2005

private char c; /—‘

private int size;
private Font font;

private Color color; /

private Character();

draw(int x, inty) {...}

-Only one class, the original one
-A flyweight class (interned)

Clients should not instantiate the
class directly. They must obtain
objects from a factory.

~

The extrinsic fields are supplied by
the client

Oranit Dror

Flyweight (cont.)

may Iintroduce run-time costs

Storage saving Is a function of:
the reduction in the total number of instances
the amount of intrinsic state per object
whether extrinsic state is computed or stored

May 8, 2005 Oranit Dror

ODbject Pool

Task: Design a class for accessing a DB

W

Network | Database
Connections Sarver Database

M

Our Class

N
I

N~

May 8, 2005 Oranit Dror

ODbject Pool (cont.)

Constraints:

Establishing and cleaning up connections
to a database are time-consuming

Connecting/Disconnecting time may depend
on the number of open connections.

The number of open connections may be
limited (server capacity, DB license)

Solution:
Maintain a pool of open connections for reuse

May 8, 2005 Oranit Dror

Object Pool (cont.)

DBConnectionPool «

private DBConnectionPool();

public static DBConnectionPool getInstance();
public int getMaxSize();

public DBConnection acquire();

/ public release(BPConnection connection);

Client

\ 4

DBConnection

protected DBConnection();

May 8, 2005 Oranit Dror

Refer ence ODbjects

Consider the following case:
we have an unlimited pool of DB connections
we may end up in an out of memory situation

To overcome this problem:

The pool will use soft references to hold DB
connections

Unused connections will be cleared by the
garbage collector if memory is required.

May 8, 2005 Oranit Dror

Refer ence Objects (cont.)

Specified In the javalang.ref package

Provide special references to objects for

a limited interaction with the garbage

collector.

Four types of references to objects:
Regular references

Soft references)
Specified by
Strength Weak references f Reference Objects
Level | = Phantom references

May 8, 2005 Oranit Dror

Refer ence Objects (cont.)

Class Hierarchy:

abstract class Specifies the
Reference common operat|ons
N
/ 1 N
/ 1 \
// 1 \\
/ 1 \
/// : \\\
/ | \\
/ 1 N
7/ I N
/ 1 \\
/ 1 N
,/ I .
/7 | N
y4 1 \
SoftRefernece WeakReference PhantomReference

May 8, 2005 Oranit Dror

Refer ence Objects (cont.)

Object Type

When garbage-collected

Strongly reachable

Never

Softly reachable

If memory is tight

Weakly reachable

Automatically

Phantom reachable

After finalization

May 8, 2005

Oranit Dror

Refer ence Objects (cont.)

Reference Object

Useful for...

SoftReference memory-safe caches
WeakReference canonicalizing mappings
PhantomReference |scheduling pre-mortem cleanup

May 8, 2005

Refer ence Objects (cont.)

Usage Example:

DBConnection connection = new DBConnection();

SoftReference connectionRef = new SofReference(connection);

connection = (DBConnection) (connectionRef.get());
if (connection == null) {
connection = new DBConnection();

connectionRef = new SoftReference(connection);

b

May 8, 2005 Oranit Dror

Books

he Gang of Four (GoF) book:

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns:
Elements Of Reusable Object-Oriented
Software. 1995.

May 8, 2005 Oranit Dror

