Object-Oriented
Programming with Java

Recitation No. 7:

Creational/Sharing Design
Patterns and Reference Objects



Design Patterns

Known solutions to common problems
Be aware of tradeoffs

Patterns that you are familiar with:
—actory

terator

Proxy

Composite
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Creational and Sharing Patterns

Factory

Abstract Factory
Singleton

Enumeration

Immutability and Interning
Flyweight

Object Pool

Others...
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Factory

The new operator gets a class name,
(no an interface or abstract class):

VersionedString vstring = new
LinkedVersionedString();

A factory method returns one of several
classes with the same interface or
super-class
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Factory (cont.)

VersionedString vstring =
VersinedStringHactory.construct();

interface
VersionedString

] W

/ \

constructs different
instances of VersionedString
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Abstract Factory

Useful for creating families of related objects
without specifying their concrete classes

Example: An application for building cars

May 8, 2005

builds various types of cars:
Hundai-Accent, Peuget 205 GTI, Fiat-Uno etc.

all cars have the same overall structure,
l.e. consist of the same components:

engine, wheels, brakes etc.
The components are different.
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Abstract Factory (cont.)

CarBuilder

A

abstract | CarFactory

createEngine() abstract | Wheel
createWheel() )

/

Client

A

A

FiatUnoWheel |---| HundaiAccentWheel

A

HundaiAccentFactory |- = | FiatUnoFactory

A

- : abstract | Engine
createEngine() createEngine() )

createWheel() createWheel()

v | |

FiatUnotEngine |- --| HundaiAccenEngine

A
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Isolates concrete classes
Exchanging product families Is easy
Promotes consistency among products

Supporting new kinds of products
Involves changing the AbstractFactory
class and all of its subclasses.

Typically implemented as a singleton.

May 8, 2005 Oranit Dror



Singleton

Ensures a class has only one instance
and provides a global access point to It.

public class Logger {

private static final Logger instance = new Logger();

private Logger() {...}
public static Logger getlnstance() {

return 1nstance;

h
h
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Singleton (cont.)

public class Logger {

private static Logger instance;

private Logger() {...}
public static Logger getlnstance() {
it (instance == null)

instance = new Logger();

Lazy evaluation

return instance; (not thread-safe)

b
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Enumer ation

Enforces a final set of instances and
provides a global access point to them.

public final class Boolean ... {

public static final Boolean FALSE = new Boolean(false);
public static final Boolean TRUE = new Boolean(true);

// Constructor

public Boolean(boolean value) {...}
// Factory Method

public static Boolean valueOf(boolean b) {...}

b
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Enumer ation (cont.)

public final class Boolean ...{
public static final Boolean FALSE = new Boolean(false);
public static final Boolean TRUE = new Boolean(true);

public Boolean(boolean value) {...}

\_‘ private
static Boolean valueOf(boolean b) { Is better

return (b ? Boolean. TRUE : Boolean.FALSE);
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| mmutability

Cannot be changed after creation
A thread-safe

Examples: Java Strings, Integers
All fields are private

Declared as final

No methods that change the fields

A method that changes the attributes should
return a new instance:

public String String.toUpperCase();
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|nterning

Reuses existing objects
Reduces the number of class instances
Permitted only to immutable objects

Example:
public String String.intern();
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|nterning (cont.)

Representing an image as an array of
pixels, each of which is a color

Y
— / Many pixels
Color Pool | A few colors
A—/
B OO

Canonical Color objects
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|nterning (cont.)

-

public final class Color {

private static Map colors = new HashMap();

private Color (int rgb) {...}

Factory

public static Color getColot(int rgb) { <O
method

it (colors.containsKey(rgb))
return (Color) colors.get(rgb);

Color color = new Color(rghb);
colors.put(rgb, color);
return colot;

b
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Flyweght

A generalization of interning
Reuses existing objects

Useful when class instances can share
most of their fields:

Intrinsic fields (can be shared)
Extrinsic fields (variable)
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Flyweight (cont.)

Use objects to represent documents,
pages, lines, tables, images, etc.
What about representing each character
by an object?

A flexible representation

The nailve design requires huge memory
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Flyweight (cont.)

The naive design (memory consuming):

class Character ... {

extrinsic — private 1int X, y; Most characters in a
. private char c; / document use the same
: : : size, font, color etc.
private int s1ze; Thus, can be shared.

intrinsic 9 private Font font;
. private Color color;

.c.l.raw() {...}

b
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Flyweight (cont.)

A better design:

The class Is broken into two classes:

a class that holds the intrinsic fields
(the flyweight class)

The original class holds the extrinsic
fields and a reference to the flyweight.

The flyweight class Is interned
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Flyweight (cont.)

The Flyweight class:

final class CharacterAttributes {
private char c;
private int size;
private Font font;
private Color color;

draw(int x, inty) {...}

b
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Flyweight (cont.)

The original class:

class Character ... {

If possible, it is better
to remove these fields

private int X, y;
CharacterAttrbutes attributes;

Character(int x, int y, char c, int size, Font font, Color color) {

attributes = CharacterAttributeFactory.construct(c, size, font, color);

b
draw() {
attributes.draw(x,y);
} Holds a pool of shared
! CharacterAttributes objects.
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Flyweight (cont.)

A better approach (if possible):

final class Character ... {
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private char c; /—‘

private int size;
private Font font;

private Color color; /

private Character();

draw(int x, inty) {...}

-Only one class, the original one
-A flyweight class (interned)

Clients should not instantiate the
class directly. They must obtain
objects from a factory.

~

The extrinsic fields are supplied by
the client
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Flyweight (cont.)

may Iintroduce run-time costs

Storage saving Is a function of:
the reduction in the total number of instances
the amount of intrinsic state per object
whether extrinsic state is computed or stored
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ODbject Pool

Task: Design a class for accessing a DB

W

Network | Database
Connections Sarver Database

M

Our Class

N
I

N~
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ODbject Pool (cont.)

Constraints:

Establishing and cleaning up connections
to a database are time-consuming

Connecting/Disconnecting time may depend
on the number of open connections.

The number of open connections may be
limited (server capacity, DB license)

Solution:
Maintain a pool of open connections for reuse
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Object Pool (cont.)

DBConnectionPool «

private DBConnectionPool();

public static DBConnectionPool getInstance();
public int getMaxSize();

public DBConnection acquire();

/ public release(BPConnection connection);

Client

\ 4

DBConnection

protected DBConnection();
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Refer ence ODbjects

Consider the following case:
we have an unlimited pool of DB connections
we may end up in an out of memory situation

To overcome this problem:

The pool will use soft references to hold DB
connections

Unused connections will be cleared by the
garbage collector if memory is required.
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Refer ence Objects (cont.)

Specified In the javalang.ref package

Provide special references to objects for

a limited interaction with the garbage

collector.

Four types of references to objects:
Regular references

Soft references )
Specified by
Strength Weak references f Reference Objects
Level | = Phantom references
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Refer ence Objects (cont.)

Class Hierarchy:

abstract class Specifies the
Reference common operat|ons
N
/ 1 N
/ 1 \
// 1 \\
/ 1 \
/// : \\\
/ | \\
/ 1 N
7/ I N
/ 1 \\
/ 1 N
,/ I .
/7 | N
y4 1 \
SoftRefernece WeakReference PhantomReference
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Refer ence Objects (cont.)

Object Type

When garbage-collected

Strongly reachable

Never

Softly reachable

If memory is tight

Weakly reachable

Automatically

Phantom reachable

After finalization
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Refer ence Objects (cont.)

Reference Object

Useful for...

SoftReference memory-safe caches
WeakReference canonicalizing mappings
PhantomReference |scheduling pre-mortem cleanup
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Refer ence Objects (cont.)

Usage Example:

DBConnection connection = new DBConnection();

SoftReference connectionRef = new SofReference(connection);

connection = (DBConnection) (connectionRef.get());
if (connection == null) {
connection = new DBConnection();

connectionRef = new SoftReference(connection);

b
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Books

he Gang of Four (GoF) book:

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns:
Elements Of Reusable Object-Oriented
Software. 1995.
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