
1

Operating SystemsOperating Systems

Lesson 4

A lot of material and assignment #2

Please stay focused

PlanPlan

� Windows Process Synchronization
◦ Signaled State of Windows object
◦ Process signaled State
◦ Event object
◦ Mutex object
◦ Semaphore object

� Modified Beeper Sample
� HW Assignment #2
◦ Description
◦ Proposed structure
◦ Hints

Process SynchronizationProcess Synchronization

� Preemptive multitasking: OS decides 
when process will get its CPU time slot

� How do we synchronized between 
processes?

◦ Process will run only after other process 
ended

◦ Only single process will have an access to a 
system resource (e.g. file)

Windows Synchronization ObjectsWindows Synchronization Objects

� Some Windows objects can be in 
signaled state (e.g. process object).

� Process can use a System Call to wait 
until object become signaled or timeout 
elapses.

� Windows provides special objects to 
more complex synchronization scenarios

� Blocking WaitForSingleObject
(HANDLE, TIMEOUT) system call to 
wait until object will be in signaled state

Process objectProcess object

� Become signaled when process has ended

� To wait for process to finish use: 
WaitForSingleObject(hProcess,..)

� Every process that waits on a handle to a 
signaled process will be alerted.

Event Object (manual reset)Event Object (manual reset)

� HANDLE hEvent=CreateEvent(NAME,..)

� Will open event if event with this name 
already exists

� To wait: WaitForSingleObject(hEvent,…)

� To signal: SetEvent(hEvent)

� Every process that waits on the event’s 
handle will be alerted 

� Example: Signal to other process when its 
input (e.g. file) is ready



2

MutexMutex ObjectObject

� HANDLE hMutex=CreateMutex(NAME,..)

� Same trick with a name (open if exist)

� Only one process waiting on a Mutex handle 
will wake up

� Mutex become un-signaled and owned by 
process 

� ReleaseMutex(hMutex) system call to make 
it signaled again

� Usage: Guard shared resource (e.g. only one 
process can write to a log file)

Semaphore objectSemaphore object

� “A mutex with a counter”

� CreateSemaphore(Name, Counter, MaxValue,…)

� Signaled when counter is >0

� ReleaseSemaphore(hSemaphore,delta…) will 
increase counter by delta

� Usage: Many processes but limited number of 
resources (e.g. 2 sound cards but 10 processes)

� Usage: Make sure that no more then “counter”(2) 
of processes are alive and using resources 

Modified Beeper SampleModified Beeper Sample Assignment #2 (due in 2 weeks)Assignment #2 (due in 2 weeks)

� Build a fibproc.exe utility

� “Parallel” calculator of Fibonacci number:

◦ An=An-1+An-2; A0=A1=1

� Given n calculate An

� Recursion is naïve way of calculating 

Fibonacci number but we’ll do it anyway

� Fibproc.exe will spawn new processes 

(fibproc.exe) if there are less then 10

fibproc.exe processes already running 

HW #2: Concept of operationHW #2: Concept of operation

� (A) Wait on a semaphore to obtain 
processing slot for specified timeout 
(command line parameter)

� (B) If successful then spawn process to 
calculate An-1, otherwise calculate 
recursively in-process

� Repeat A and B for An-2

� Never spawn a child process for n=1 or 
n=0

HW #2: Input/OutputHW #2: Input/Output

� Input
◦ Fibproc.exe 50 “c:\log.txt” 100

◦ Fibonacci number, path to log file and time to 
wait before calculating in-process

� Output
◦ Fibonacci number as return code 

◦ Log file entry
� TIME <TAB>N<TAB> An<TAB>NumProc

◦ TIME is unsigned result form GetTickCount()

◦ NumProc(0-2) is number of child processes



3

HW #2:Suggested structureHW #2:Suggested structure
� DWORD FibByRec(DWORD dwNum)

◦ Calculate Fibonacci by simple recursion

� DWORD FibByProc(DWORD dwNum, LPCTSTR 
log_path, DWORD dwWaitTime)

◦ Run child process and wait for it to return. Use its exit code as 
return value

� DWORD FibByProcOrRec(DWORD dwNum, 
LPCTSTR log_path,
DWORD dwWaitTime,
DWORD* pCount)

◦ Wait on semaphore and run either FibByProc of FibByRec

◦ Fall back on FibByRec if FibByProc failed

� BOOL ProtectedLogWrite(LPCTSTR log_path, 
LPCSTR log_str)

◦ Write string to a file protected by Mutex

Assignment #2:Main functionAssignment #2:Main function

◦ Parse command line

◦ Call FibByProcOrRec twice

◦ Prepare output string

◦ Call ProtectedLogWrite

◦ Retrun Fibonacci as exit code

� Total: ~130 lines of well-formatted code

Assignment #2: HintsAssignment #2: Hints

� Create process with console first and 
write debug output to a console

� Use GetModuleFileName to get path to 
current executable

� Use reasonable wait time while waiting 
for child process to end or mutex to be 
signaled (e.g. 30 second)

HW#2: System Calls to useHW#2: System Calls to use

� CreateMutex/CreateSemaphore

� ReleaseMutex/ReleaseSemaphore

� WaitForSingleObject

� CreateProcess/GetExitCodeProcess

� CloseHandle (Mutex, Process, Semaphore)

� GetModuleFileName

� File and string functions


