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ABSTRACT
Reingold, Vadhan and Wigderson [21] introduced the graph
zig-zag product. This product combines a large graph and
a small graph into one graph, such that the resulting graph
inherits its size from the large graph, its degree from the
small graph and its spectral gap from both. Using this prod-
uct they gave the first fully-explicit combinatorial construc-
tion of expander graphs. They showed how to construct D–

regular graphs having spectral gap 1−O(D− 1
3 ). In the same

paper, they posed the open problem of whether a similar
graph product could be used to achieve the almost-optimal

spectral gap 1−O(D− 1
2 ).

In this paper we propose a generalization of the zig-zag
product that combines a large graph and several small graphs.
The new product gives a better relation between the degree
and the spectral gap of the resulting graph. We use the new
product to give a fully-explicit combinatorial construction

of D–regular graphs having spectral gap 1−D− 1
2+o(1).
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F.m [Theory of Computation]: Miscellaneous;
G.2 [Discrete Mathematics]: Graph Theory
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1. INTRODUCTION
Expander graphs are graphs of low-degree and high con-

nectivity. There are several ways to measure the quality of
expansion in a graph. One such way measures set expan-
sion: given a not too large set S, it measures the size of the
set Γ(S) of neighbors of S, relative to |S|. Another way is
(Rényi) entropic expansion: given a distribution π on the
vertices of the graph, it measures the amount of (Rényi)
entropy added in π′ = Gπ. This is closely related to mea-
suring the algebraic expansion given by the spectral gap of
the adjacency matrix of the graph (see Section 2 for formal
definitions, and [9] for an excellent survey).

Pinsker [19] was the first to observe that constant-degree
random graphs have almost-optimal set expansion. Explicit
graphs with algebraic expansion were constructed, e.g., in [14,
8, 11]. This line of research culminated by the works of
Lubotzky, Philips and Sarnak [13], Margulis [15] and Mor-
genstern [17] who explicitly constructed Ramanujan graphs,

i.e., D–regular graphs achieving spectral gap of 1− 2
√

D−1
D

.
Alon and Boppana (see [18]) showed that Ramanujan graphs
achieve almost the best possible algebraic expansion, and
Friedman [7] showed that random graphs are almost Ra-
manujan (we cite his result in Theorem 6). Several works [6,
3, 1, 12] showed intimate connections between set expansion
and algebraic expansion. We refer the reader, again, to the
excellent survey paper [9].

Despite the optimality of the constructions above, the
search for new expander constructions is still going on. This
is motivated, in part, by some intriguing remaining open
questions. Another important motivation comes from the
fact that expanders are a basic tool in complexity theory,
with applications in many different areas. The above men-
tioned explicit constructions rely on deep mathematical re-
sults, while it seems natural to look for a purely combina-
torial way of constructing and analyzing such objects. This
goal was achieved recently by Reingold, Vadhan and Wigder-
son [21] who gave a combinatorial construction of algebraic
expanders. Their construction has an intuitive analysis and
is based on elementary linear algebra. The heart of the con-
struction is a new graph product, named the zig-zag prod-
uct, which we explain soon.

Following their work, Capalbo et. al. [5] used a variant of
the zig-zag product to explicitly construct D–regular graphs
with set expansion close to D (rather than D/2 that is guar-
anteed in Ramanujan graph constructions). Also, in a seem-
ingly different setting, Reingold [20] gave a log-space algo-
rithm for undirected connectivity, settling a long-standing



open problem, by taking advantage, among other things, of
the simple combinatorial composition of the zig-zag product.

Several works studied different aspects of the zig-zag com-
position. Alon et. al [2] showed, somewhat surprisingly,
an algebraic interpretation of the zig-zag product over non-
Abelian Cayley graphs. This lead to new iterative construc-
tions of Cayley expanders [16, 22], which were once again
based on algebraic structures. While these constructions
are not optimal, they contribute to our understanding of
the power of the zig-zag product.

The expander construction presented in [21] has spectral

gap 1 − O(D− 1
4 ). As was noted in that paper, this is the

best possible for the zig-zag product, because the zig-zag
product takes two steps on a “small graph”, and as we ex-
plain soon, one of these steps may be completely wasted. It
is still possible, however, that a variant of the zig-zag prod-
uct gives better expansion. Indeed, [5] modified the zig-zag
product to get close to optimal set expansion. Also, [21]
considered a “derandomized” variant of the zig-zag prod-
uct, where one takes two steps on the small graph, one step
on the large graph and then two more steps on the small
graph, but where the first and last steps are correlated (in
fact, identical). They showed this product has spectral gap

1 − O(D− 1
3 ). They posed the open problem of finding a

variant of the zig-zag product with almost-optimal spectral

gap 1 − O(D− 1
2 ). In fact, any combinatorial construction

achieving the above spectral gap is yet unknown.
Our main result is a new variant of the zig-zag prod-

uct, where instead of composing one large graph with one
small graph, we compose one large graph with several small
graphs. The new graph product we develop exhibits a bet-
ter relationship between its degree and its spectral gap and
retains most of the other properties of the standard zig-zag
product. In particular, we use this product to construct an
iterative family of D–regular expanders with spectral gap

1−D− 1
2+o(1), thus nearly resolving the open problem of [21].

Bilu and Linial [4] gave a different iterative construction of
algebraic expanders that is based on 2-lifts. Their construc-

tion has close to optimal spectral gap 1−O((log1.5 D)·D− 1
2 ).

We mention, however, that their construction is only mildly-
explicit (meaning that, given N , one can build a graph GN

on N vertices in poly(N) time). Our construction, as well
as [21], is fully-explicit (meaning that given v ∈ V = [N ] and
i ∈ [D] one can output the i’th neighbor of v in poly(log(N))
time). This stronger notion of explicitness is crucial for some
applications.

1.1 An intuitive explanation of the new prod-
uct

1.1.1 The zig-zag product
Let us review the zig-zag product of [21]. We begin by first

describing the replacement product between two graphs,
where the degree, D1, of the first graph G1 equals the num-
ber of vertices, N2, of the second graph H. In the resulting
graph, every vertex v of G1 is replaced with a cloud of D1

vertices {(v, i)}i∈[D1]. We put an“inter-cloud” edge between

(v, i) and (w, j) if e = (v, w) is an edge in G1 and e is the
i’th edge leaving v, and the j’th edge leaving w. We also
put copies of H on each of the clouds, i.e., for every v we
put an edge between (v, i) and (v, j) if (i, j) is an edge in H.

The zig-zag product graph corresponds to 3-step walks on

the replacement product graph, where the first and last steps
are inner-cloud edges and the middle step is an inter-cloud
edge. That is, the vertices of the zig-zag product graph are
the same as the replacement product graph, and we put an
edge between (v, i) and (w, j) if one can reach (w, j) from
(v, i) by taking a 3-step walk: first an H edge on the cloud of
v, then an inter-cloud edge to the cloud of w, and finally an
H edge on the cloud of w. Roughly speaking, the resulting
graph inherits its size from the large graph, its degree from
the small graph, andits spectral gap from both.

Before we proceed, let us adopt a slightly more formal
notation. We denote by V1 the set of vertices of G1 and
its cardinality by N1. Similarly, V2 is the set of vertices
of H and its cardinality is N2 = D1. The degree of H is
denoted by D2. We associate each of the graphs with its
normalized adjacency matrix, and we let λ̄(·) denote the
second-largest eigenvalue of a given graph. We view G1 as
a linear operator on a dim-N1 vector space. For a vertex
v ∈ V , we denote by −→v the vector that its v–coordinate is
1 and all its other coordinates are 0. Next, we define an
operator Ġ1 on a vector space V of dimension N1 ·N2 that
is the adjacency matrix of the inter-clouds edges (i.e., in the

notation above, Ġ1(v, i) = (w, j)). We also let H̃ = I ⊗H,
i.e., it is an H step on the cloud coordinates, unchanging
the cloud itself. In this notation, the adjacency matrix of
the zig-zag product is H̃Ġ1H̃ and our task is to bound its
second-largest eigenvalue. Notice that Ġ1 is a permutation
(in fact, a perfect matching).

Any distribution on V = V1 × V2 can be thought of as
giving each cloud some weight, and then distributing that
weight within the cloud. Thus, the distribution has two
components; the first corresponds to a cloud (a G1 vertex)
and the second corresponds to a position within a cloud (a

H vertex). To give an intuition why H̃Ġ1H̃ is an expander
we analyze two extreme cases. In the first case, the dis-
tribution within each cloud is entropy-deficient (and hence

far from uniform) and the first H̃ application already adds
entropy. In the second case, the distribution within each
cloud is uniform. In this case the first H̃ application does
not change the distribution at all. However, as we are uni-
form on the clouds, applying Ġ1 on the distribution prop-
agates the entropy from the second component to the first
one (this follows from the fact that G1 is an expander). Any

permutation, and Ġ1 in particular, does not change the over-
all entropy of the distribution. Thus, we conclude that the
entropy added to the first component was taken from the
second component, and hence the second component is now
entropy-deficient. Therefore, the second H̃ application adds
entropy.

The formal analysis in [21] works by decomposing V into

two subspaces: The first subspace, V ||, includes all the vec-
tors x that are uniform over clouds, i.e., all vectors of the
form x = x(1)⊗1, where x(1) is an arbitrary N1-dimensional
vector and 1 is the (normalized) all 1’s vector. The second
subspace, V⊥, is its orthogonal complement. Two obser-

vations are made. First, that
D
x(1) ⊗ 1, H̃Ġ1H̃(y(1) ⊗ 1)

E

equals to
D
x(1), G1y

(1)
E

and therefore when x, y ∈ V || and

x ⊥ 1 we have that
���
D
x, H̃Ġ1H̃y

E��� ≤ λ̄(G1) |〈x, y〉|. The

second observation is that when either x or y belong to

V⊥ we have that
���
D
x, H̃Ġ1H̃y

E��� ≤ λ̄(H) |〈x, y〉|. There-



fore, by linearity, we get that H̃Ġ1H̃ maps vectors x ⊥ 1
in V to vectors with length smaller by a factor of at least
4 ·min

�
λ̄(G1), λ̄(H)

	
. A more careful analysis yields a bet-

ter bound.
The non-optimality of the zig-zag product comes from the

following observation. The degree of the zig-zag graph is
D2

2 (where D2 is the degree of H). However, when x ∈
V || we have that H̃Ġ1H̃x = H̃Ġ1x, and the operator H̃Ġ1

corresponds to taking only a single step on H. Namely, we
pay in the degree for two steps, but (on some vectors) we get
the benefit of only one step. Therefore, the best we can hope

for is getting the Ramanujan value for D2, namely, 2
√

D2−1
D2

.
We would like to point out an interesting phenomena that

occurs in the zig-zag product analysis. The analysis shows

that
���
D
x, H̃Ġ1H̃y

E��� ≤ λ̄(G1) |〈x, y〉| for x, y ∈ V || and x ⊥ 1.

Thus, even though the degree of H̃Ġ1H̃ is only D2
2 ¿ D1,

this part of the analysis gives us λ̄(G1) ¿ D−2
2 . Saying it

differently, when the operator acts on x ∈ V ||, it uses the
entropy x has in each cloud, rather than the entropy that
comes from the zig-zag graph degree.

1.1.2 The k-step zig-zag product
Now consider the variant of the zig-zag product where we

take k steps on H rather than just 2. That is, we consider
the graph whose adjacency matrix is H̃Ġ1H̃ . . . H̃Ġ1H̃ with
k steps on H. How small is the second largest eigenvalue
going to be? In particular, will it beat λ̄(H)k/2 that we
get from sequential applications of the zig-zag product, or
not? Obviously, the same argument as before shows that we
must lose at least one H̃ application. Is it possible that this
is indeed what we get and that the second-largest eigenvalue
is of order λ̄(H)k−1?

The problem.
Let us consider what happens when we take three H steps.

The operator we consider is therefore H̃Ġ1H̃Ġ1H̃. Given a
distribution over the graph’s vertices, we are asking how
many of the H̃ applications add entropy. Suppose that the
first H̃ application does not add entropy. This is immedi-
ately followed by Ġ1, which (in this case) propagates entropy
from the second component to the first one. Thus, the sec-
ond H̃ application adds entropy. Now we apply Ġ1 again. It
is possible that at this stage the distribution on the second
component is far from uniform. In this case Ġ1 might cause
the entropy to propagate back from the first component to
the second component, possibly making the second compo-
nent uniform again. If this happens, the third H̃ application
does not add entropy at all. Thus, we have three H steps,
but only one adds entropy.

We rephrase the problem in an algebraic language. Notice
that in the zig-zag product we have just one application of
Ġ1, whereas in the new product we have k− 1 such applica-
tions. G1 is an operator that describes a stochastic process
that randomly chooses one of D1 possible neighbors. In con-
trast, Ġ1 is a unitary operator, a permutation mapping one
cloud element to another cloud element. In particular, it

follows from the way Ġ1 is defined that Ġ1
2

= I. There-
fore, it is possible, may be even plausible, that the second
Ġ1 step cancels the first Ġ1 step. If that happens, we might
end up with the second-largest eigenvalue of Ġ1H̃Ġ1 being a

constant, completely independent of both λ̄(G) and λ̄(H).1

Thus, it seems that the only thing that can save us is the
action of H̃ between two Ġ1 steps. However, the prospects
here do not look too bright, because Ġ1H̃Ġ1 is an operator
acting on a large vector space of dimension N1N2 (recall
that we think of N2 as a constant and of N1 as a growing
parameter) while H should be a constant size graph. It
seems highly unlikely that one can prove that there exists
a good graph H, among the constant number of possible
small graphs, such that on any vector of arbitrarily large
dimension, the second application of Ġ1 does not invert the
first one.

The solution.
In order to gain more H steps we need to make sure

that entropy does not flow in the wrong direction. This
is achieved as follows. Whenever a H̃ application does not
add entropy, we know that the distribution over the second
component is uniform. We want to take advantage of this
to make sure all the following Ġ1 applications do not move
entropy in the wrong direction. Thus, failure in a single H̃
application, guarantees success in all following H̃ applica-
tions.

When a H̃ application does not add entropy, the distri-
bution over the second component is close to uniform. We
make the second component large enough such that it can
support k uniform G steps. For example, we can make the
cloud size |V2| equal D4k

1 . The graph G1 still has degree
D1, and we therefore need to specify how to translate a
cloud vertex (from [D1]

4k) to an edge-label (in [D1]). For
concreteness, let us assume we take the edge-label from the
first log(D1) bits of the cloud vertex. Now, all we need for

the operator Ġ1 to move entropy in the right direction is
that the second component is uniform only on its first few
bits.

Let us take a closer look at the situation. We start with a
uniform distribution over the second component (because we

are considering the case where H̃ fails) with about 4k log(D1)

entropy. We apply Ġ1 and up to log(D1) entropy flows from
the second component to the first one. Thus, there is still
much entropy in the second component. We now apply H̃.
Our goal is to guarantee that H̃ moves the entropy in the
second component to the first log(D1) bits. When this hap-

pens, the next Ġ1 application moves more entropy from the
second component to the first one, and entropy never flows
in the wrong direction.

The problem is the condition we get on a “good” H seems
to involve a large vector space V = V1 ⊗ V2 of dimension
N1 · D1, and there are only a constant number of possible
graphs H on D4k

1 vertices (we think of D1 and k as constants,
and of N1 as a growing parameter). The key observation
here is that by enforcing an additional requirement on the
graph G1 that we soon describe, we can reduce the number
of constraints, in particular making them independent of N1.

1[23] also bound the expression
���
D
Ġ1H̃Ġ1x, x

E���, when x ∈
V || and x ⊥ 1. They express H as H = (1 − λ2)J + λ2C,
where J is the normalized all one matrix and ‖C‖ ≤ 1. This
decomposition yields the bound λ2

1+λ2, which is useful when
λ2 ¿ λ1. In our case λ1 ¿ λ2. Applying the decomposition

on
���
D
H̃Ġ1H̃Ġ1H̃x, x

E���, seems to give a bound that is larger

than λ2, which is not useful for us.



With this, the problem can be easily solved using standard
probabilistic arguments.

A graph G1 is π-consistently labeled [20] if for every edge
e = (v, w), if e is the i’th edge leaving v then e is the π(i)’th
edge leaving w. In other words, we can reverse a step i by
using the label π(i).2 We say a graph is locally invertible if it
is π-consistently labeled for some π. That is, we can reverse
a step i without knowing where we came from and where
we are now. We show a natural condition guaranteeing that
H is good for locally invertible G1. The condition involves
only edge labels and is therefore independent of N1.

Armed with that we go back to the zig-zag analysis. As
in [21], we decompose the vector space V to its parallel and
perpendicular parts. However, because we have k − 1 inter-
mediate G1 steps, we need to decompose not only the initial
vectors, but also some intermediate vectors. Doing it care-
fully, we get that composing G1 (of degree D1 and second
eigenvalue λ1) with k graphs Hi (of degree D2 and second
eigenvalue λ2 each) we get a new graph with degree Dk

2 and
second eigenvalue about λk−1

2 + λk
2 + 2λ1. We can think of

λ1 as being arbitrarily small, as we can decrease it to any
constant we wish without affecting the degree of the result-
ing graph. One can interpret the above result as saying that
k − 1 out of the k steps worked for us!

1.1.3 An almost-Ramanujan expander construction
We now go back to the iterative expander construction

of [21] and replace the zig-zag component there with the k-
step zig-zag product. Say, we wish to construct graphs of
degree D, for D of the form D = Dk

2 . Doing the iterative
construction we get a degree D expander, with k steps over
graphs {Hi}, each of degree D2. Roughly speaking, the
resulting eigenvalue is λk−1

2 where λ2 is the Ramanujan value

for D2, i.e., λ2 = 2
√

D2−1
D2

. The optimal value we shoot

for is the Ramanujan value for D, which is 2
√

D−1
D

. Our
losses come from two different sources. First we lose one
application of H out of the k applications, and this loss
amounts to, roughly,

√
D2 multiplicative factor. We also

have a second loss of 2k−1 multiplicative factor emanating
from the fact that λRam(D2)

k ≈ 2k−1λRam(Dk
2 ). This last

loss corresponds to the fact that Hk is not Ramanujan even
when H is. Balancing our losses gives:

Theorem 1. For every D > 0, there exists a fully-explicit
family of graphs {Gi}, with an increasing number of vertices,

such that each Gi is D–regular and λ̄(Gi) ≤ D
− 1

2+O( 1√
log D

)
.

In this extended abstract we prove Theorem 1 only for
degrees of a specific form. Proving Theorem 1 in its full
generality is a bit more technical. This proof will appear in
the full version of this paper.

1.2 Organization of the paper
In Section 2 we give preliminary definitions. Section 3

contains the formal definition of the k-step zig-zag product.
Section 4 contains a proof that almost all graphs are good.
Section 5 contains the analysis of the new product. Finally,
in Section 6 we use the product to give an iterative construc-
tion of expanders.

2This should not be confused with the term consistently la-
beled (without a permutation π) which has a different mean-
ing.

2. PRELIMINARIES
We associate a (directed or undirected) graph G = (V, E)

with its normalized adjacency matrix, also denoted by G,
i.e., Gi,j = 1

deg(j)
if (i, j) ∈ E and 0 otherwise. For a matrix

G we denote by si(G) the i’th largest singular value of G.
If the graph G is regular (i.e., degin(v) = degout(v) = D for
all v ∈ V ) then s1(G) = 1. We also define λ̄(G) = s2(G).
We say a graph G is a (D, λ) graph, if it is D–regular and
λ̄(G) ≤ λ. We also say G is a (N, D, λ) graph if it is a (D, λ)
graph over N vertices. If G is an undirected graph then the
matrix G is Hermitian, in which case there is an orthonormal
eigenvector basis and the eigenvalues λ1 ≥ . . . ≥ λN are real.
In this case, λ̄(G) = s2(G) = max {λ2, |λN |}. We say a D–

regular graph is Ramanujan if λ̄(G) ≤ λRam(D)
def
= 2

√
d−1
d

.
We can convert a directed expander to an undirected ex-

pander simply by undirecting the edges. Say G is a (N, D, λ)
directed graph. Then U = 1

2
[G+G†] is an undirected graph.

Also, 1
def
= 1√

N
(1, . . . , 1)t is an eigenvector of both G and

G† and so s2(U) = 1
2
s2(G + G†) ≤ s2(G). It follows that U

is a (N, 2D, λ) graph.
To represent graphs, we use the rotation maps introduced

in [21]. Let G be an undirected D–regular graph G = (V, E).
Assume that for every v ∈ V , its D outgoing edges are
labeled by [1..D]. Let v[i] denote the i’th neighbor of v
in G. We define RotG : V × [D] → V × [D] as follows.
RotG(v, i) = (w, j) if v[i] = w and w[j] = v. In words, the
i’th neighbor of v is w, and the j’th neighbor of w goes back
to v. Notice that if RotG(v, i) = (w, j) then RotG(w, j) =
(v, i), i.e., Rot2G is the identity mapping.

Definition 1. A graph G is locally invertible if its ro-
tation map is of the form RotG(v, i) = (v[i], φ(i)) for some
permutation φ : [d] → [d]. We say that φ is the local inver-
sion function.

For an n-dimensional vector x we let |x|1 =
Pn

i=1 |xi| and

‖x‖ =
p
〈x, x〉. We measure the distance between two dis-

tributions P, Q by |P −Q|1. The operator norm of a linear
operator L over a vector space is ‖L‖∞ = maxx:‖x‖=1 ‖Lx‖.

We often use vectors coming from a tensor vector space
V = V1⊗V2, as well as vertices coming from a product vertex
set V = V1 × V2. In such cases we use superscripts to indi-
cate the universe a certain object resides in. For example, we
denote vectors from V1 by x(1), y(1) etc. In particular, when
x ∈ V is a product vector then x(1) denotes the V1 compo-
nent, x(2) denotes the V2 component and x = x(1) ⊗ x(2).
SΛ represents the permutation group over Λ. GN,D, for an

even D, is the following distribution over D–regular, undi-
rected graphs: First, uniformly choose D/2 permutations
γ1, . . . , γD/2 ∈ S[N ]. Then, output the graph G = (V =
[N ], E), whose edges are the undirected edges formed by the
D/2 permutations.

3. THE K-STEP ZIG-ZAG PRODUCT

3.1 The product
The input to the product is:

• A possibly directed graph G1 = (V1 = [N1], E1) that
is a (D1, λ1) graph. We assume G1 has a local in-

version function φ = φG1 . That is, RotG1(v
(1), d1) =

(v(1)[d1], φG1(d1)).



• k undirected graphs H̄ = (H1, . . . , Hk), where each Hi

is a (N2, D2, λ2) graph over the vertex set V2.

In the replacement product (and also in the zig-zag prod-
uct) the parameters are set such that the degree D1 of G1

equals the cardinality of V2. An element v2 ∈ V2 is then in-
terpreted as a label d1 ∈ [D1]. However, as explained in the
introduction, we take larger graphs Hi, with V2 = [D1]

4k.
That is, we have D4k

1 vertices in V2 rather than D1 in the
replacement product. Therefore, we need to explain how to
map a vertex v(2) ∈ V2 = [D1]

4k to a label d1 ∈ [D1] of G1.
For that we use a map f : V2 → [D1] that is regular, i.e.,
every element of [D1] has the same number of f pre-images
in V2. For simplicity we fix one concrete such f – the func-
tion π1 that takes the first [D1] coordinate of V2. Namely,

π1(v
(2)) = π1(v

(2)
1 , . . . , v

(2)
4k ) = v

(2)
1 .

The graph Gnew = G z©H̄ that we construct is related
to a k–step walk over this new replacement product. The
vertices of Gnew are V1 × V2. The degree of the graph is
Dk

2 and the edges are indexed by ī = (i1, . . . , ik) ∈ [D2]
k.

We next define the rotation map RotGnew of the new graph.
For v = (v(1), v(2)) ∈ V1 × V2 and ī = (i1, . . . , ik) ∈ [D2]

k,
RotGnew (v, ī) is defined as follows.

We start the walk at (v
(1)
0 , v

(2)
0 ) = v = (v(1), v(2)). For j =

1, . . . , 2k−1, if j is odd, we set t = j+1
2

(and so t = 1, . . . , k)
and take one Ht(·, it) step on the second component. I.e.,

the first component is left untouched, v
(1)
j = v

(1)
j−1 and we

set (v
(2)
j , i′t) = RotHt(v

(2)
j−1, it). For even j, we take one

step on G1 with π1(v
(2)
j−1) as the [D1] label to be used, i.e.,

v
(1)
j = v

(1)
j−1[π1(v

(2)
j−1)]. We set v

(2)
j = ψ(v

(2)
j−1), where

ψ(v(2)) = (φG1(π1(v
(2))), v

(2)
2 , v

(2)
3 , . . . , v

(2)
4k ). (1)

Namely, for the first [D1] coordinate of the second com-
ponent we use the local inversion function of G1, and all
other coordinates are left unchanged. Finally, we specify

RotGnew (v, ī) =
�
(v

(1)
2k−1, v

(2)
2k−1), (i

′
k, . . . , i′1)

�
. It is straight-

forward to verify that RotGnew is indeed a rotation map.
To summarize, we start with a D1–regular graph over N1

vertices (we think of D1 as a constant and of N1 = |V1| as
a growing parameter) that is locally invertible. We replace
each degree D1 vertex with a “cloud” of D4k

1 vertices, and
map a cloud vertex to a D1 instruction using π1. We then
take a (2k− 1)-step walk, with alternating H and G1 steps,
over the resulting graph.

3.2 A condition guaranteeing good algebraic
expansion

We remind the reader of the discussion in Subsection 1.1.2
about “good” graphs H. We start with some x ∈ V that is
uniform over clouds. We say the graphs H̄ = (H1, . . . , Hk)

are good if, for any j > i, applying H̃jĠ1H̃j−1Ġ1 . . . H̃iĠ1

on x always results in a vector that is uniform over the first
log(D1) bits of the cloud.

Each graph Hi is D2–regular, and hence can be expressed
as Hi = 1

D2

PD2
j=1Hi,j where Hi,j is the transition matrix of

a permutation γi,j ∈ SV2 . Instead of showing that H̄ is good,
we show that each sequence of permutations γ1,j1 , . . . , γk,jk

is good in some sense that we define soon. Working with per-
mutations is easier than working with H̄ because a sequence
of permutations induces a deterministic behavior while any
H̃i is stochastic.

Assume we have a local inversion function on G1 that is
extended to a permutation ψ : V2 → V2 as in Equation (1).
We first determine the labels that are induced by replacing
the Hi steps with the permutations γ1, . . . , γk:

Definition 2. Let ψ, γ1, . . . , γk−1 : V2 → V2 be permu-
tations. Denote γ̄ = (γ1, . . . , γk−1). The permutation se-
quence q̄ = (q0, . . . , qk−1) induced by (γ̄, ψ) is defined as
follows:

• q0(v
(2)) = v(2),

• For 1 ≤ i < k, qi(v
(2)) = γi(ψ(qi−1(v

(2)))).

It can be checked that qj(v) is the V2 value one reaches

after taking a j-step walk starting at v(2) (and an arbitrary

v(1)) and taking each time a G1 step followed by a γi per-
mutation (for i = 1, . . . , j).

We say γ̄ is ε–pseudorandom with respect to ψ if the dis-
tribution of the first log(D1) bits in each of the k labels we
encounter is uniform. We define:

Definition 3. Let q0, . . . , qk−1 : V2 → V2 be the permu-
tations induced by (γ̄ = (γ1, . . . , γk−1), ψ). We say γ̄ is ε–
pseudorandom with respect to ψ if

��π1(q0(U)) ◦ . . . ◦ π1(qk−1(U))− U[D1]k

��
1
≤ ε,

where π1(q0(U)) ◦ . . . ◦ π1(qk−1(U)) is the distribution ob-

tained by picking v(2) ∈ V2 uniformly at random and out-
putting (π1(q0(v

(2))), . . . , π1(qk−1(v
(2)))) and U[D1]k is the

uniform distribution over [D1]
k.

We say γ̄ is ε–pseudorandom with respect to G1, if G1 has
a local inversion function φG1 , ψ is defined as in Equation
(1) and γ̄ is ε–pseudorandom with respect to ψ.

In the next section (in Lemma 5) we shall show that for
every D–regular locally invertible graph, almost every γ̄ is
ε–pseudorandom with respect to it.

We are now ready to define when H̄ is good:

Definition 4. Let H̄ = (H1, . . . , Hk) be a k-tuple of D2–
regular graphs over V2. We say H̄ is ε–pseudorandom with
respect to ψ, if we can express each graph Hi as Hi =
1

D2

PD2
j=1Hi,j such that:

• Hi,j is the transition matrix of a permutation γi,j ∈
SV2 .

• For any 1 ≤ `1 ≤ `2 ≤ k, j`1 , . . . , j`2 ∈ [D2], the se-
quence γ`1,j`1

, . . . , γ`2,j`2
is ε–pseudorandom with re-

spect to ψ.

We say H̄ is ε–pseudorandom with respect to G1, if G1 has
a local inversion function φG1 , ψ is defined as in Equation
(1) and H̄ is ε–pseudorandom with respect to ψ. If, in ad-
dition, for each i = 1, . . . , k we have λ̄(Hi) ≤ λRam(D2)+ ε,
we say that H̄ is ε–good with respect to G1 (or ψ).

In Section 4 we prove that for every locally invertible
graph G1, almost all H̄ are good with respect to G1. In
fact, it turns out that there exists a sequence H̄ that is good
for all D1-regular, locally invertible graphs.3

3The original claim we had only showed that for every G1

there is a good sequence H̄. We thank the anonymous ref-
eree for noticing that the bound in Lemma 5 actually proves
this stronger claim.



In the following section (in Theorem 7) we shall prove
that almost any H̄ is ε–good with respect to any D1–regular
locally invertible graph.

Our main result states that, whenever H̄ is good with
respect to G1, the k-step zigzag product does not lose much
in the spectral gap. Formally,

Theorem 2. Let G1 = (V1 = [N1], E1) be a (D1, λ1) lo-
cally invertible graph with a local inversion function φG1 .
Let H̄ = (H1, . . . , Hk) be a sequence of (N2 = D4k

1 , D2, λ2)
graphs that is ε–good with respect to G1, and assume λ2 ≤ 1

2
.

Then, Gnew = G z©H̄ is a (N1 ·N2, D
k
2 , f(λ1, λ2, ε, k)) graph

for f(λ1, λ2, ε, k) = λk−1
2 + 2(ε + λ1) + λk

2 .

A word about the parameters is in place. Say our goal
is to construct a D = Dk

2–regular graph that is as good
algebraic expander as possible. By increasing D1 we can
decrease λ1. In fact, we can make λ1 any small constant we
choose, while still keeping D1 and N2 = D4k

1 constants. The
crucial point is that we can still pick a good sequence H̄ on
this larger number of vertices, with degree D2 (as before)
and λ̄ = λ2 (as before). Namely, we can decrease λ1 to any
constant we wish, while keeping D2 and λ2 as before, and
the only (negligible) cost is making N2 a somewhat larger
constant. In particular, the final degree D = Dk

2 of the
graph Gnew stays unchanged. The same argument can be
applied to decrease ε, and, in fact, ε in Theorem 7 is already
much smaller than λk

2 . We therefore consider λ1 and ε as
negligible terms. In this view the graph we construct has
λ̄ = λk−1

2 + λk
2 plus some negligible terms. In other words,

we do k zig-zag steps and almost all of them (k − 1 out of
k) “work” for us.

4. ALMOST ANY H̄ IS GOOD

4.1 A Hyper-Geometric lemma
We shall need the following tail estimate:

Theorem 3. ([10], Theorem 2.10) Let Ω be a universe
and S1 ⊆ Ω a fixed subset of size m1. Let S2 ⊆ Ω be a
uniformly random subset of size m2. Set µ = ES2 [|S1∩S2|] =
m1m2
|Ω| . Then for every ε > 0,

Pr
S2

[| |S1 ∩ S2| − µ| ≥ εµ] ≤ 2e−ε2/3µ.

A simple generalization of this gives:

Lemma 4. Let Ω be a universe and S1 ⊆ Ω a fixed subset
of size m. Let S2, . . . , Sk ⊆ Ω be uniformly random subsets

of size m. Set µk = ES2,...,Sk [ | S1 ∩S2 . . .∩Sk | ] = mk

|Ω|k−1 .

Then for every 0 < ε ≤ 1
4k

,

Pr
S2,...,Sk

[| |S1 ∩ S2 . . . ∩ Sk| − µk| ≥ 2εkµk] ≤ 2ke−
ε2
6 µk .

Proof: By induction on k. k = 2 is Theorem 3. Assume
for k, and let us prove for k + 1. Let A = S1 ∩ . . . Sk ⊆ Ω.
By the induction hypothesis we know that, except for prob-

ability δk = 2ke−
ε2
6 µk , the set A has size in the range

[(1− 2(k− 1)ε)µk, (1+2(k− 1)ε)µk] for µk = mk

|Ω|k−1 . When

this happens, by Theorem 3, |A ∩ Sk+1| is in the range

[(1 − ε) |A|m|Ω| , (1 + ε) |A|m|Ω| ] ⊆ [(1 − 2kε)µk, (1 + 2kε)µk] ex-

cept for probability 2e
− ε2

3
|A|m
|Ω| ≤ 2e−

ε2
3 (1−2(k−1)ε)µk+1 ≤

2e−
ε2
6 µk+1 . Thus, |A∩Sk+1| is in the required range except

for probability δk + 2e−
ε2
6 µk+1 ≤ 2(k + 1)e−

ε2
6 µk+1 and this

completes the proof.

4.2 Almost any γ̄ is pseudorandom
The main lemma we prove in this section is:

Lemma 5. For every ε > 0, the probability that a se-
quence of uniformly random and independent permutations
(γ1, . . . , γk−1) is not ε–pseudorandom with respect to G1 is

at most 2ke
−Ω(ε

D3k
1

k2 )
.

Proof: Let q0, . . . , qk−1 : V2 → V2 be the permutations in-
duced by (γ̄ = (γ1, . . . , γk−1), ψ), where ψ is as defined in
Equation (1). Let A denote the distribution π1(q1(U))◦ . . .◦
π1(qk(U)) and B the uniform distribution over [D1]

k. Fix
an arbitrary r̄ = (r1, . . . , rk) ∈ [D1]

k. For 1 ≤ i ≤ k, denote
Si = {x ∈ V2 | π1(qi(x)) = ri}. Since qi is a permutation

and π1 is a regular function, |Si| = |V2|
D1

. We observe that
for each i, qi is a random permutation distributed uniformly
in SV2 . Moreover, these permutations are independent. It

follows that the sets S2, . . . , Sk are random |V2|
D1

–subsets of
V2, and they are independent as well.

By definition A(r̄) = |S1∩S2...∩Sk|
|V2| . Notice that

E[|S1 ∩ S2 . . . ∩ Sk|] = µ =
(|V2|/D1)

k

|V2|k−1
=
|V2|
Dk

1

= D3k
1 .

By Lemma 4 the probability we deviate from this by

a multiplicative factor of 1 + ε is at most 2ke
−Ω( ε

k2 µ)
=

2ke
−Ω(ε

D3k
1

k2 )
. It follows that:

Pr
γ1,...,γk

[|A(r̄)−B(r̄)| ≥ εD−k
1 ] ≤ 2ke

−Ω(ε
D3k

1
k2 )

.

Therefore, using a simple union bound, the event ∃r̄ |A(r̄)−
B(r̄)| ≥ εD−k

1 happens with probability that is at most

Dk
1 · 2ke

−Ω(ε
D3k

1
k2 )

. However, |A−B|1 =
P

r̄ |A(r̄)−B(r̄)| ≤
Dk

1 ·maxr̄ {|A(r̄)−B(r̄)|} and therefore except for the above
failure probability we have |A−B|1 ≤ ε as desired.

4.3 The spectrum of random D-regular graphs
Friedman [7] proved the following theorem regarding the

spectrum of random regular graphs. The distribution GN,D

is described in Section 2.

Theorem 6. ([7]) For every δ > 0 and for every even D,
there exists a constant c > 0, independent of N , such that

Pr
G∼GN,D

[λ̄(G) > λRam(D) + δ] ≤ c ·N−d(√D−1+1)/2e−1.

4.4 Almost any H̄ is good

Theorem 7. For every even D2 ≥ 4, there exists a con-
stant B, such that for every D1 ≥ B and every k ≥ 3
the following holds. Set N2 = D4k

1 and ε = D−k
2 . Pick

H̄ = (H1, . . . , Hk) with each Hi sampled independently and
uniformly from GN2,D2 . Then,

• Each Hi is locally invertible.



• With probability at least half, H̄ is ε–good with respect
to any D1–regular locally invertible graph.

Proof: We first show that for any fixed D1–regular locally
invertible graph G1, almost any H̄ is good for it. We then
use a union bound (over all possible local inversion functions
for D1–regular graphs) to deduce the theorem.

Let us fix a D1–regular locally invertible graph G1. We
randomly pick H̄ = (H1, . . . , Hk) as in the lemma. I.e., let
{γi,j}i∈[k], j∈[D2/2] be a set of random permutations chosen
uniformly and independently from SV2 . For 1 ≤ i ≤ k,
let Hi be the undirected graph over V2 formed from the
permutations {γi,j}j∈[D2/2] and their inverses. Notice that
Hi is locally invertible, simply by labeling the directed edge
(v, γi,j(v)) with the label j, and (v, γ−1

i,j (v)) with the label
D2/2 + j (recall that each edge needs to be labeled twice,
once by each of its vertices).

Notice that the inverse of a uniform random permutation
is also a uniform random permutation. Therefore, for every
j1, . . . , jk ∈ [D2/2] and for every p1, . . . , pk ∈ {1,−1}, the k-
tuple γ̄ = (γp1

1,j1
, . . . , γpk

k,jk
) is uniform in (S|V2|)

k. It follows

from Lemma 5 that H̄ is not ε–pseudorandom with respect

to G1 with probability at most k2 ·Dk
2 ·Dk

1 · 2ke
−Ω(ε

D3k
1

k2 )
.4

Taking ε = D−k
2 ≥ D−k

1 we see that the error term is at

most δ
def
= D3k

1 e
−Ω(

Dk
1

k2 )
.

To see that a single sequence H̄ is, with high probability,
good for any D1-regular locally invertible graph, we use a
union bound. Notice that there are only D1! local inversion
functions over D1 vertices (compare this with the N2! per-
mutations over V2). The probability a random H̄ is bad for
any of them is at most δ, and therefore the probability over
H̄ that it is bad for any of them is at most D1! · δ. Taking
D1 large enough this term is at most 1

10
.

Also, by Theorem 6, the probability that there exists a
graph Hi in H̄ with λ̄(Hi) ≥ λRam(D2) + ε is at most k ·
c · |V2|−d(

√
D2−1+1)/2e−1 ≤ k · c · |V2|−1 = kc

D14k for some

universal constant c independent of |V2| and therefore also
independent of D1. Taking D1 large enough (depending on
the unspecified constant c) this term also becomes smaller
than 1

10
.

Altogether, H̄ is always locally invertible, and with prob-
ability at least 1

2
is ε–good with respect to any D1–regular

locally invertible graph.

5. ANALYSIS OF THE PRODUCT
We want to express the k-step walk described in Sec-

tion 3.1 as a composition of linear operators. We define
vector spaces Vi with dim(Vi) = |Vi| = Ni, and we iden-

tify an element v(i) ∈ Vi with a basis vector
−→
v(i). Notice

that

�−−→
v(1) ⊗

−−→
v(2) | v(1) ∈ V1, v

(2) ∈ V2

�
is a basis for V. On

this basis we define the linear operators H̃i(
−−→
v(1) ⊗

−−→
v(2)) =−−→

v(1) ⊗
−−−−→
Hiv

(2) and Ġ1(
−−→
v(1) ⊗

−−→
v(2)) =

−−−−−−−−−→
v(1)[π1(v

(2))] ⊗
−−−−→
ψ(v(2)),

where ψ is as defined in Equation 1. Having this terminol-

4The k2 term appears because ε–pseudorandomness of H̄ re-
quires every subsequence of permutations to have this prop-
erty; taking a union bound over the choice of the starting
and ending indices 1 ≤ `1 ≤ `2 ≤ k of the subsequence
amounts to k2

ogy, the adjacency matrix of the new graph Gnew is the linear
transformation on V defined by H̃kĠ1H̃k−1Ġ1 . . . H̃2Ġ1H̃1.

Proof of Theorem 2: Gnew is a regular, directed graph
and our goal is to bound s2(Gnew). Fix unit vectors x, y ⊥ 1
for which s2(Gnew) = |〈Gnewx, y〉|. As in the analysis of
the zig-zag product, we decompose V = V1 ⊗ V2 to its
parallel and perpendicular parts. V || is defined by V || =

Span

�−−→
v(1) ⊗ 1 : v(1) ∈ V1

�
and V⊥ is its orthogonal com-

plement. For any vector τ ∈ V we denote by τ || and τ⊥ the
projections of τ on V || and V⊥ respectively.

In Gnew we take k − 1 steps on Ġ1. As a result, in the
analysis we need to decompose not only x0 = x and y0 =
y, but also the vectors x1, . . . , xk−1 and y1, . . . , yk−1 where
xi = Ġ1H̃ix

⊥
i−1 and yi = Ġ1H̃k−i+1 y⊥i−1. Observe that

‖xi‖ ≤ λi
2‖x0‖ and ‖yi‖ ≤ λi

2‖y0‖.
Now look at y†0H̃kĠ1 . . . H̃2Ġ1H̃1x0 and decompose x0 to

x
||
0 and x⊥0 . Focusing on x⊥0 we see that, by definition,

y†0H̃kĠ1 . . . H̃2Ġ1H̃1x
⊥
0 = y†0H̃kĠ1 . . . H̃3Ġ1H̃2x1. We con-

tinue by decomposing x1. This results in: y†0H̃kx⊥k−1 +Pk
i=1 y†0H̃kĠ1 . . . H̃i+1Ġ1H̃ix

||
i−1.

We can now do the same decomposition on y0, using the
fact that both Ġ1 and H̃j are Hermitian and so (y⊥j )†H̃k−jĠ1

equals (Ġ1H̃k−jy
⊥
j )† = y†j+1. This gives the expression

y†0H̃kx⊥k−1 +
Pk

i=1(y
||
k−i)

†x||i−1 +
Pk

i=1(y
⊥
k−i)

†x||i−1 +P
1≤i<j≤k(y

||
k−j)

†Ġ1H̃j−1 . . . H̃i+1Ġ1x
||
i−1.

Now,

•



y†0H̃kx⊥k−1




 ≤



H̃kx⊥k−1




 ≤ λ2



x⊥k−1



 ≤ λ2‖xk‖ ≤
λ2λ

k−1
2 ‖x0‖ = λk

2 .

• Since V⊥ ⊥ V ||, we get
Pk

i=1(y
⊥
k−i)

†x||i−1 = 0.

• The term



Pk

i=1(y
||
k−i)

†x||i−1




 ≤Pk
i=1




y||k−i




 ·



x||i−1





is bounded in Lemma 13 by λk−1

2 .

• Finally, we take advantage of the way we selected H̄.
As H̄ is ε–pseudorandom with respect to G1, the action
of Ġ1H̃j−1 . . . H̃i+1Ġ1 on V || is ε–close to the action of
Gj−i on it. Formally, we use Lemma 10 to get:

X

1≤i<j≤k




(y||k−j)
†Ġ1H̃j−1 . . . H̃i+1Ġ1x

||
i−1






≤
X

1≤i<j≤k

(λj−i
1 + ε)




y||k−j








x||i−1






=

k−1X
t=1

(λt
1 + ε)

k−tX
i=1




y||k−i−t








x||i−1






≤ (λ1 + ε)

k−1X
t=1

λk−t−1
2

= (λ1 + ε)

k−2X
i=0

λi
2 ≤ 2(λ1 + ε),

where we have used Lemma 13 and the assumption
λ2 ≤ 1

2
.

Altogether, |y†Gnewx| ≤ λk−1
2 +2(ε+λ1)+λk

2 as desired.



5.1 The action of Ġ1H̃i+`Ġ1 . . . H̃i+1Ġ1 on V ||
The heart of this section is the following lemma.

Lemma 8. Suppose γ̄ = (γ1, . . . , γ`) is ε–pseudorandom

with respect to G1 and denote by Γ̃1, . . . , Γ̃` the operators
corresponding to γ1, . . . , γ`. Any τ, ξ ∈ V || can be written as
τ = τ (1) ⊗ 1 and ξ = ξ(1) ⊗ 1. For any such τ, ξ:
���
D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E
−
D
G`+1τ (1), ξ(1)

E��� ≤ ε · ‖τ‖ · ‖ξ‖.

Proof: G1 is D1–regular, hence it can be represented as
G1 = 1

D1

PD1
i=1 Gi, where Gi is the adjacency matrix of some

permutation in SV1 . Let ψ be as in Equation (1) and q̄ =
(q0, . . . , qk−1) be the permutations induced by (γ̄, ψ). A sim-
ple calculation (that is given in Lemma 11 in Subsection
5.2) shows that there exists some σ ∈ SV2 , such that for any

u(1) ∈ V1 and u(2) ∈ V2:

Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1(
−−→
u(1) ⊗

−−→
u(2)) (2)

= Gπ1(q`(u
(2))) . . .Gπ1(q0(u(2)))(

−−→
u(1))⊗

−−−−→
σ(u(2)).

Now, we analyze the action of Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1 on vectors
τ = τ (1) ⊗ 1 and ξ = ξ(1) ⊗ 1 in V ||. Using Equation (2) we
can show that (see Lemma 12 in Subsection 5.2):
D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E

=
1

N2

X

v(2)∈V2

D
Gπ1(q`(v

(2))) . . .Gπ1(q0(v(2)))τ
(1), ξ(1)

E
.

Restating the above,
D
Ġ1Γ̃j+`Ġ1 . . . Γ̃j+1Ġ1τ, ξ

E
equals

Ez1,...,z`∼Z
hD
Gz` . . .Gz1τ (1), ξ(1)

Ei
, where Z is the distribu-

tion on [D1]
k obtained by picking v(2) uniformly at random

in V2 and outputting z1, . . . , z` where zi = π1(qi(v
(2))). No-

tice also that Gk
1 = Ez∈[D1]k [Gz` . . .Gz1 ]. As (γ1, . . . , γk)

is ε–pseudorandom with respect to G1 we can deduce that��Z − U[D1]k

��
1
≤ ε. We now use:

Claim 9. Let P, Q be two distributions over Ω and let
{Li}i∈Ω be a set of linear operators over Λ, each with op-
erator norm bounded by 1. Define P = Ex∼P [Lx] and Q =
Ex∼Q[Lx]. Then, for any τ, ξ ∈ Λ, | 〈Pτ, ξ〉 − 〈Qτ, ξ〉 | ≤
|P −Q|1 · ‖τ‖ · ‖ξ‖.

Proof: First, notice that ‖P −Q‖∞ ≤ Px |P (x) − Q(x)| ·
‖Lx‖∞ ≤ |P −Q|1. Therefore, it follows that | 〈Pτ, ξ〉 −
〈Qτ, ξ〉 | = | 〈(P −Q)τ, ξ〉 | ≤ ‖P −Q‖∞·‖τ‖·‖ξ‖ ≤ |P −Q|1·
‖τ‖ · ‖ξ‖.

Thus,
���
D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E
−
D
G`+1τ (1), ξ(1)

E��� is up-

per bounded by ε ·



τ (1)




 ·



ξ(1)




 = ε · ‖τ‖ · ‖ξ‖ (because

‖τ‖ =



τ (1) ⊗ 1




 =



τ (1)




 · ‖1‖ =



τ (1)




) and this com-

pletes the proof of Lemma 8.

Having Lemma 8 we can prove:

Lemma 10.
���
D
Ġ1H̃i+`Ġ1 . . . H̃i+1Ġ1τ, ξ

E��� ≤ (λ`+1
1 +

ε)‖τ‖‖ξ‖ for every ` ≥ 1 and τ, ξ ∈ V ||, τ, ξ ⊥ 1V .

Proof: Since H̄ is ε–good with respect to G1, we can ex-
press each Hi as Hi = 1

D2

PD2
j=1Hi,j such that Hi,j is the

transition matrix of a permutation γi,j ∈ SV2 and each of
the Dk

2 sequences γ1,j1 , . . . , γk,jk is ε–pseudorandom with re-
spect to G1. Let Γi,j be the operator on V2 corresponding to
the permutation γi,j and Γ̃i,j = I⊗Γi,j be the corresponding
operator on V1 ⊗ V2.

Now,
D
Ġ1H̃i+`Ġ1 . . . H̃i+1Ġ1τ, ξ

E
is equal to the expecta-

tion Ej1,...,j`∈[D2]

hD
Ġ1Γ̃i+`,j`Ġ1 . . . Γ̃i+1,j1Ġ1τ, ξ

Ei
. Notice

that not only H̄ is ε–pseudorandom with respect to G1, but
also every subsequence of H̄ is. Thus, by Lemma 8,

���
D
Ġ1H̃i+`Ġ1 . . . H̃i+1Ġ1τ, ξ

E
−
D
G`+1τ (1), ξ(1)

E���
≤ ε · ‖τ‖ · ‖ξ‖.

Since τ, ξ ⊥ 1, so does their τ (1), ξ(1) components. There-

fore,
���
D
G`+1τ (1), ξ(1)

E��� ≤ λ`+1
1




τ (1)







ξ(1)




. The fact that

‖τ‖ =



τ (1)




 and ‖ξ‖ =



ξ(1)




 completes the proof.

5.2 The action of the composition

Lemma 11. There exists σ ∈ SV2 , such that for any u(1) ∈
V1 and u(2) ∈ V2:

Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1(
−−→
u(1) ⊗

−−→
u(2))

= Gπ1(q`(u
(2))) . . .Gπ1(q0(u(2)))(

−−→
u(1))⊗

−−−−→
σ(u(2)).

Proof: The action of Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1 on a basis element−−→
u(1) ⊗

−−→
u(2), where u(1) ∈ V1 and u(2) ∈ V2, is as follows.

• We first check which of the [D1] labels we use at the

i’th application of Ġ1 (for i = 0, . . . , `). We see that

q0(u
(2)) = u(2) and that for i = 1, . . . , ` we have

qi(u
(2)) = γi(φ(qi−1(u

(2)))).

• Hence, the action of Ġ1Γ̃iĠ1 . . . Γ̃1Ġ1 on the first com-
ponent (for i = 1, . . . , `) is given by the linear operator
Gπ1(qi(u

(2))) . . .Gπ1(q0(u(2))).

• Next, we notice that the V2 component evolves inde-
pendently of u(1). At the beginning it is u(2). Af-
ter applying one step of Ġ1 and one of Γ̃1 it evolves
to γ1(φ(u(2))). Eventually, this component becomes

φ(γ`(φ(. . . γ1(φ(u(2))) . . .))). The crucial thing to no-
tice here is that {γi} and φ are all permutations in SV2 .
We define σ to be the permutation φγ`φ . . . γ1φ.

This completes the proof of the lemma.

Lemma 12. For any τ = τ (1)⊗1 and ξ = ξ(1)⊗1 in V ||,
D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E

=
1

N2

X

v(2)∈V2

D
Gπ1(q`(v

(2))) . . .Gπ1(q0(v(2)))τ
(1), ξ(1)

E
.

Proof: A simple calculation yields that
D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E

equals 1
N2

P
v(2),u(2)∈V2

D
Gπ1(q`(v

(2))) . . .Gπ1(q0(v(2)))τ
(1), ξ(1)

E
·�−−−−→

σ(v(2)),
−−→
u(2)

�
. However, as σ is a permutation over V2, for



every v(2) ∈ V2 there is exactly one u(2) that does not vanish.
Hence,

D
Ġ1Γ̃`Ġ1 . . . Γ̃1Ġ1τ, ξ

E

=
1

N2

X

v(2)∈V2

D
Gπ1(q`(v

(2))) . . .Gπ1(q0(v(2)))τ
(1), ξ(1)

E
.

5.3 A lemma on partial sums
In the following lemma we have a sum of k terms. Each

of magnitude at most λk−t−1
2 . Surprisingly, we can bound

the sum by λk−t−1
2 , improving upon the trivial bound of

k · λk−t−1
2 .

Lemma 13. Let t ≥ 0. Then
Pk−t

i=1




y||k−i−t




 ·



x||i−1




 ≤
λk−t−1

2 .

Proof:

k−tX
i=1




y||k−i−t




 ·



x||i−1




 = λk−t−1
2

k−tX
i=1







y
||
k−i−t

λk−i−t
2






 ·







x
||
i−i

λi−1
2








≤ λk−t−1
2 · 1

2

 
k−t−1X

i=0







y
||
i

λi
2








2

+

k−t−1X
i=0







x
||
i

λi
2








2!
.

Now, we bound
Pk−t−1

i=0






x
||
i

λi
2






2

and the bound for the ex-

pression
Pk−t−1

i=0






y
||
i

λi
2






2

is similarly obtained. Denote

∆` =






x⊥`
λ`

2






2

+
X̀
i=0







x
||
i

λi
2








2

.

Then

∆` =






x`

λ`
2






2

+

`−1X
i=0







x
||
i

λi
2








2

≤







λ2x
⊥
`−1

λ`
2








2

+

`−1X
i=0







x
||
i

λi
2








2

= ∆`−1.

In particular, ∆k−t−1 ≤ ∆0 =



x||0





2

. It follows that

k−t−1X
i=0







x
||
i

λi
2








2

≤



x||0





2

−







x⊥k−t−1

λk−t−1
2








2

≤ ‖x0‖2 = 1.

6. THE ITERATIVE CONSTRUCTION
In [21] an iterative construction of expanders was given,

starting with constant-size expanders, and constructing at
each step larger constant-degree expanders. Each iteration is
a sequence of tensoring (which makes the graph much larger,
the degree larger and the spectral gap the same), powering
(which keeps the graph size the same, increases the spectral
gap and the degree) and a zig-zag product (that reduces
the degree back to what it should be without harming the
spectral gap much). Here we follow the same strategy, using
the same sequence of tensoring, powering and degree reduc-
tion, albeit we use k-step zigzag products rather than zig-zag
products to reduce the degree. We do it for degrees D of the
special form D = 2Dk

2 . Giving an iterative construction for

a general D is a bit more technical and will appear in the
full version of this paper.

Let D2 be an arbitrary even number greater than 2. We
are given a degree D of the form D = 2Dk

2 . Set ε = D−k
2 and

λ2 = λRam(D2) + ε. We find a sequence H̄ = (H1, . . . , Hk)
of (D16k, D2, λ2) graphs, that is ε-good with respect to D4–
regular locally invertible graphs. We find it by brute force;
its existence is guaranteed by Theorem 7. Verify that a
given H̄ can be done in time depending only on D, D2 and
k, independent of N1.

We start with two constant-size graphs G1 and G2. G1 is
a (N0, D, λ) graph, and G2 is a (N2

0 , D, λ) graph, for N0 =
D16k and λ = 2λk−1

2 . We find both graphs by a brute force
search (the existence of such graphs follows from Theorem
6 given in Subsection 4.3). Now, for t > 2 :

• Define Gtemp = (Gb t−1
2 c ⊗ Gd t−1

2 e)
2. Gtemp is over

N t−1
0 vertices and has degree D4.

• Let Gt = 1
2
[Gtemp z©H̄ +

�
Gtemp z©H̄

�†
].

We claim:

Theorem 14. The family of undirected graphs {Gt} is
fully-explicit and each graph Gt is a (N t

0, D, λ) graph.

The proof is immediate from the following two lemmas.

Lemma 15. For every t ≥ 1, Gt is a (N t
0, D, λ) undirected

graph.

Proof: It is easy to verify that Gt is over N t
0 vertices and

has degree D = 2Dk
2 . We turn to prove the bound on its

spectral gap. Let αt denote the second-largest eigenvalue of
Gt and let βt = maxi≤t {αi}. We shall prove by induction
that βt ≤ λ. For t = 1, 2 this follows from the way G1 and
G2 were chosen. For t > 2, using the properties of tensor-
ing, powering and the k-step zig-zag product, we get the re-
cursive relation βt = max

�
βt−1, λ

k−1
2 + λk

2 + 2(β2
t−1 + ε)

	
.

Bounding βt−1 by 2λk−1
2 and plugging ε ≤ λ2k

2 we get

βt ≤ λk−1
2 (1 + λ2 + 10 · λk−1

2 ) ≤ 2λk−1
2 = λ,

where in the last inequality we used the fact that λ2 ≤
λRam(D2) + ε ≤ 1/4.

Lemma 16. {Gt} is a fully explicit family of graphs, each
having an explicit local inversion function.

Proof: We prove the lemma by the induction. The cases
t = 1, 2 are immediate. Assume we have a local inver-
sion function φi : [D] → [D] for all {Gi}i≤t, written as a
constant-size table. This defines the local inversion function
φ : [D4] → [D4] for Gtemp = (Gr ⊗ G`)

2, simply by taking
φ((r1, `1), (r2, `2)) = ((φr(r2), φ`(`2)), (φr(r1), φ`(`1))).

We next explain how to write down the inversion func-
tion φt+1 : [2Dk

2 ] → [2Dk
2 ] for Gt+1. Gt+1 has 2Dk

2 di-
rected edges, and we label the edges coming from Gtemp z©H̄
with the labels (0, i1, . . . , ik) and the edges coming from�
Gtemp z©H̄

�†
with (1, ik, . . . , i1), where ij describes the step

on Hj . We then set the function to be φt+1(b, i1, . . . , ik) =
(1− b, φHk (ik), . . . , φH1(i1)).

We need to show how to compute RotGt+1(v, w) = (v[w], w′).
We already saw how to compute w′ = φt+1(w). We now
show how to compute v[w]. Say w = (1, i1, . . . , ik) ∈ {0, 1}×
[D2]

k and v = (v
(1)
1 , v

(1)
2 , v(2)) with v

(1)
1 ∈ [N t1

0 ], v
(1)
2 ∈



[N t2
0 ], v(2) ∈ [N0 = D16k] and t1 + t2 = t. One can com-

pute v[w] by the following the walk starting at v, each time
taking a step on Hj or on (Gt1 ⊗ Gt2)

2. This takes time
poly-logarithmic in the number of vertices of Gt+1.

The resulting eigenvalue is λ = 2λk−1
2 where λ2 is about

the Ramanujan value for D2, whereas the best we can hope

for λ̄Ram(D) = 2
√

D−1
D

. As explained in the introduction,
our losses come from two different sources. First we lose
one application of H out of the k different H applications,
and this loss amounts to, roughly,

√
D2 multiplicative factor.

We also have a second loss of 2k−1 multiplicative factor em-
anating from the fact that λRam(D2)

k =≈ 2k−1λRam(Dk
2 ).

Balancing losses we roughly have D = Dk
2 and D2 = 2k

which is solved by k = log(D2) and D = 2log2(D2). I.e., our

loss is about 2k = 2
√

log(D). Formally,

Corollary 17. Let D2 be an arbitrary even number that
is greater than 2, and let D = 2Dlog D2

2 . Then, there exists

a fully explicit family of (D, D
− 1

2+O( 1√
log D

)
) graphs.

Proof: Set k = log D2 in the above construction. Clearly
the resulting graphs are D–regular and fully explicit. Also,
for every graph G in the family,

λ̄(G) ≤ 2(λRam(D2) + D−k
2 )k−1 ≤ D

− 1
2+ 2√

log D .

Acknowledgements
We thank the anonymous referees for several useful sugges-
tions that improved the presentation of the paper. We thank
one of the referees for strengthening Theorem 7 (see footnote
3).

7. REFERENCES
[1] N. Alon. Eigenvalues and expanders. Combinatorica,

6(2):83–96, 1986.

[2] N. Alon, A. Lubotzky, and A. Wigderson. Semi-direct
product in groups and zig-zag product in graphs:
connections and applications. In Proceedings of the
42nd FOCS, pages 630–637, 2001.

[3] N. Alon and V. Milman. λ1, isoperimetric inequalities
for graphs, and superconcentrators. Journal of
Combinatorial Theory. Series B, 38(1):73–88, 1985.

[4] Y. Bilu and N. Linial. Lifts, discrepancy and nearly
optimal spectral gap. Combinatorica, 26(5):495–519,
2006.

[5] M. Capalbo, O. Reingold, S. Vadhan, and
A. Wigderson. Randomness conductors and
constant-degree expansion beyond the degree / 2
barrier. In Proceedings of the 34th STOC, pages
659–668, 2002.

[6] J. Dodziuk. Difference equations, isoperimetric
inequality and transience of certain random walks.
Trans. Amer. Math. Soc., 284(2):787–794, 1984.

[7] J. Friedman. A proof of Alon’s second eigenvalue
conjecture. Memoirs of the AMS, to appear.

[8] O. Gabber and Z. Galil. Explicit Constructions of
Linear-Sized Superconcentrators. Journal of Computer
and System Sciences, 22(3):407–420, 1981.

[9] S. Hoory, N. Linial, and A. Wigderson. Expander
graphs and their applications. Bulletin of the AMS,
43(4):439–561, 2006.

[10] S. Janson, T. ÃLuczak, and A. Ruciński. Random
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