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Abstract

In this paper, we present an interactive system for users to easily colorize the natural images of complex scenes.
In our system, colorization procedure is explicitly separated into two stages: Color labeling and Color mapping.
Pixels that should roughly share similar colors are grouped into coherent regions in the color labeling stage, and
the color mapping stage is then introduced to further fine-tune the colors in each coherent region. To handle tex-
tures commonly seen in natural images, we propose a new color labeling scheme that groups not only neighboring
pixels with similar intensity but also remote pixels with similar texture. Motivated by the insight into the comple-
mentary nature possessed by the highly contrastive locations and the smooth locations, we employ a smoothness
map to guide the incorporation of intensity-continuity and texture-similarity constraints in the design of our label-
ing algorithm. Within each coherent region obtained from the color labeling stage, the color mapping is applied
to generate vivid colorization effect by assigning colors to a few pixels in the region. A set of intuitive interface
tools is designed for labeling, coloring and modifying the result. We demonstrate compelling results of colorizing
natural images using our system, with only a modest amount of user input.

1. Introduction

Colorization is the process of coloring monochrome im-

ages. It has been widely used in photo processing and sci-

entific illustration. Traditionally, colorization process is te-

dious, time consuming and requires artistic skills to precisely

add the appropriate colors to the image. In recent years, sev-

eral interactive colorization techniques [WAM02, LLW04,

ICOL05, HTC∗05, HK05, YS06, QWH06, KV06] have been

proposed to effectively colorize images with significantly re-

duced amount of user efforts.

These techniques colorize the image based on the user’s

input examples, which can be given in form of a simi-

lar colored image [WAM02, TJT05, ICOL05] or manually

marked strokes in the input image [LLW04,HTC∗05,YS06,

QWH06, KV06]. The task in image colorization is in speci-

fying which parts of the image should be colorized by what

colors. The method by Levin et al. [LLW04], for instance,

† This work was done while Qing Luan was a visiting student at

Microsoft Research Asia

uses strokes to indicate colors of certain pixels and col-

orizes the image using an optimization based on intensity-

continuity constraints where adjacent pixels with similar in-

tensity have similar colors. However, it may still require a

very large number of strokes to achieve high quality col-

orization of images with complex textures, as shown in Fig-

ure 1(b). Moreover, selecting colors for more than a hundred

strokes is no simple task.

The colorization problem is closely related to image seg-

mentation since it aims to propagate user-specified colors

(e.g., with strokes or example segments) to nearby image

regions. Colorization techniques assume, explicitly or im-

plicitly, that image segments can be well defined as coherent

segments in intensity space [LLW04,HTC∗05,HK05,YS06,

KV06], or in texture space [ICOL05, QWH06]. The inter-

active Manga colorization technique [QWH06], for exam-

ple, groups uniform pattern regions into a small number of

distinctive clusters before colorization. While such pattern-

continuity constraints work well for Manga cartoons, they

are not effective for natural images with rich and inhomoge-

neous texture distributions.
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In this paper, we present an interactive colorization sys-

tem that requires modest amounts of user interactions for

natural image colorization. Colorization is explicitly divided

into two steps in our system, Color Labeling and Color Map-

ping. Instead of assgining colors directly to the image us-

ing strokes, users first scribble to group regions that would

roughly share similar colors in the color labeling step, with-

out worrying about the specific color for each local region.

Then the color mapping step is applied in each labeled re-

gion to create vivid colorization effect.

In the color labeling step, we designed a new labeling

scheme to handle texture regions commonly seen in the nat-

ural images, in which not only nearby pixels with similar in-

tensities but also remote pixels with similar texture features

should share similar colors. This new framework makes it

possible to segment natural images into coherent regions

with a small number of strokes specified by the user.

In the color mapping step, colorization with rich color

variation can be obtained using only a few color pixels ass-

gined in the labeled region. We provide the user with real-

time feedback so that he can simply select appropriate colors

or create colorization of a variety of different styles.

Overview of our system An example of our system is

shown in Figure 2. With only several strokes in (a), we obtain

a color labeling in (b) where coherent regions (sky, house,

grasses, and flowers) are segmented. By specifying colors

for a couple of points in each coherent region, we get the

colorized image in (c).

The user starts by scribbling distinctive color labels on the

regions of interest. For example, when scribbling a couple

of strokes on two flowers, the user says something like “I’d

like to colorize the flower field similar to these two flowers".

The yellow color labels associated with these two strokes are

iteratively propagated across the whole image. Our energy

optimization propagates color labels to intensity-continuous

and texture-similar regions that may be far apart and dis-

connected. This labeling scheme reduces a large amount of

interaction in scribbling the strokes.

Once the regions are labeled with colors, we use a simple

color mapping scheme for rich colorization. For each coher-

ent region in the image, we choose a few pixels that have

significantly different luminance values and assign colors to

them. Their luminance (Y) values define a piecewise linear

mapping that can be applied to corresponding chroma chan-

nels (U,V) to effectively colorize rich textured regions. This

process of specifying a few color pixels for those with high

and low luminance values is intuitive for the user. This be-

comes a simpler task for the user to think of colors for only a

few pixels in a coherent region (e.g., a flower field), without

having to worry about the whole image.

The colorized image now is ready for the user to inspect.

The user may be unsatisfied with some parts of the colorized

image, possibly due to errors that occurred while we labeling

(a) (c)(b)

Figure 1: Levin’s method. (a) Strokes on the image. (b)
Strokes alone. (c) Results using [Levin et al.2004]. Hundreds
of strokes are needed for colorizing a natural image with tex-
ture regions like this.

(b) (c)(a)

Figure 2: Our colorization procedure: First, several strokes
with pseudo colors are drawn to group the regions that
roughly share similar colors, as shown in (a). Only six
strokes are drawn to label the image. Then, in each label
region, we fine-tune the color by specifying colors for sev-
eral pixels, as shown in (b). Only two pixels in each region
are chosen to assign colors in this example. (c) Our final
colorization effect.

complex images. Whenever necessary, the process of color

labeling can be refined by adding a few more strokes, and

by constraining the optimization in a much smaller search

range. We have designed two intuitive UI tools to help with

this refinement task.

Previous work To facilitate the colorization of im-

ages, a number of techniques have been recently proposed

[WAM02, LLW04, ICOL05, TJT05, HTC∗05, HK05, YS06,

QWH06, KV06]. One approach for colorization is based

on learning techniques [WAM02]. The relation between the

grey level image and its colored version is learned from ex-

amples [RAGS01,TJT05]. Irony [ICOL05] use a supervised

learning technique to better classify feature-space and a vot-

ing technique to increase the spatial consistency of the col-

orized image. This technique assumes that a similar example

image is pre-segmented. Otherwise, the task of segmenting

the example image itself can be almost as hard as colorizing

the input image.
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A new class of colorization techniques is user-guided

[LLW04, HTC∗05, YS06, QWH06, KV06]. The user draws

color strokes over the image, and the colors diffuse from

the strokes outward across the image. Levin et al. [LLW04]

propagate the colors from the strokes to the entire image by

solving a simple optimization problem, based on the premise

that neighboring pixels in image space that have similar

(monochromatic) intensity should also have similar colors.

Yatziv et al. [YS06] color pixels with a weighted aver-

age of stroke colors, where the weights are proportional to

the geodesic distance between the pixel and corresponding

stroke. These techniques assume that the intensities are lo-

cally smooth, an assumption that does not hold for textured

images.

Qu et al. [QWH06] introduce a method for colorizing

Manga images. They analyze the texture space, and define an

affinity to measure distances between a pixel and a stroke in

feature space. Then for a given stroke they evolve a level set

around it to associate a spatially-coherent region with that

scribble. The level set is defined by considering the affin-

ity and the smoothness of the image. This technique is de-

signed to deal with Manga illustrations which can be suc-

cessfully segmented into regions of homogeneous textures.

In a natural image the variety of textures is large, and the

texture space cannot be clearly clustered, thus there is no

hope to successfully define an effective affinity and hence

define a good criterion to control the level set. The tech-

nique we introduce in this paper avoids defining a global

affinity or a metric, but rather defines a color distribution

function by taking local decisions only. This allows propa-

gating through smoothly varying textures. Figure 15 shows

how our technique can successfully deal with the Kimono

example from [QWH06].

Our work is also very much related to texture cluster-

ing and segmentation. Texture clustering often uses fea-

tures such as filter banks (e.g., [VZ03]), random fields, and

wavelets. Texture clusters have been used for image segmen-

tation in computer vision, and texture patches have also been

successfully used for efficient texture synthesis [EL99] in

computer graphics. Similar to [QWH06], we make use of

texture clusters for colorization.

2. Color Labeling

In our interface, a user scribbles a few strokes on the im-

age indicating which regions or objects should be colored

by what specific label colors (as shown in Figure 2(a)). This

high level user interaction does not need precise input since

our method is not sensitive to where we draw strokes(shown

in the video). The objective of color labeling is to assign a

color label to every pixel in the image, given the pseudo col-

ors associated with user-drawn strokes.

2.1. Energy Optimization Framework

Labeling of the natural image with texture regions is a chal-

lenging task. Existing interactive image segmentation meth-

(c) graphcut using texture feature

(b) lazy snapping

(a) strokes

Figure 3: Comparison with other segmentation methods. (a)
The strokes (we tried several sets of strokes, and these were
the ones with the best segmentation results) (b) The lazy
snapping result [LSTS04](we segment two regions at a time).
Notice the repeated texture is not well handled. (c) The result
using graphcut with texture feature as likelihood. The spatial
smooth term in graphcut cannot handle severe misclassica-
tion.

ods like [LSTS04] would fail in handling texture regions

since only intensity distribution is considered (as shown in

Figure 3(b)). To address this problem, the textures should be

explicitly taken into the consideration. One straightforward

method is using the texture feature as the likelihood term in

graphcut. However, erroneous labels may be brought in, as

shown in Figure 3(c). These errors essentially originate from

the confusion among texture features in different regions of

the image, which incurs a high risk of misclassification.

Investigation of the problem leads us to the insight into the

complementary nature inherently possessed by the highly

contrastive locations and the smooth locations.

1. The texture features at the highly contrastive locations

tend to be well clustered in the feature space.

2. The smooth regions are characterized by the coherence

between neighboring colors, thus a pixel therein can be reli-

ably colorized based on the intensity continuity.

Motivated by the observation above, we propose a new

formulation that integrates the intensity continuity and the

texture-similarity. A smoothness value identifying different

natures of locations is used to guide the incorporation of the

two constraints. We trust more in the texture similarity term
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(c)(b)(a)

Figure 4: The smoothness map. (a) A gray image. (b) Edge
image for (a) generated by canny operator. (c) The smooth-
ness map obtained by applying Gaussian filter with kernel
N(0,32) to the edge map shown in (b).

for highly contrastive locations, while the intensity continu-

ity is considered as more reliable for smooth locations.

Specifically, we obtain the likelihood of every pixel to be

colored by each label color. This color label likelihood func-

tion is denoted as L(C; p), where C = [C1,C2, ...,CN]T rep-

resents all the label colors.

We introduce an energy optimization framework that in-

corporates both intensity continuity and texture similarity

constraints for all the pixels p in the image:

E = ∑
p∈img

(λ(p)E1 +(1−λ(p))E2), (1)

where the textural term E1 and the spatial term E2 are

E1 = ∑
q∈Ωt(p)

wt
pq ‖L(C; p)−L(C;q)‖ (2)

E2 = ∑
q∈Ωs(p)

ws
pq ‖L(C; p)−L(C;q)‖ (3)

under hard constrain: L(C; p) = [0, ...,1k, ...0]T , p ∈ strokek ,

where strokek means strokes with the color Ck .

To solve the above optimization, we need to define the

weight map λ(p), textural neighbors Ωt(p) and spatial

neighbors Ωs(p).

2.2. Smoothness Map: λ(p).

There are many ways to estimate the smoothness around a

specific location. In our method, we use the filtered edge

map. At each pixel p, the value of λ(p) is related to the dis-

tance between p to its nearest edge. Specifically, we use the

Canny operator to extract the edges of the image. We then

apply a Gaussian filter with kernel N(0,σ2) on the edge im-

age to obtain a smoothed edge map. If p is near edges, λ(p)
is large, otherwise λ(p) is small. In our implementation, the

σ is set as a quarter of the patch size that we used for texture

space analysis, as shown in Figure 4.

2.3. Textural neighbors Ωt(p) and wt
pq.

We regard the texture neighbors of a pixel p as those pixels

that are similar to p in feature space. The set of the texture

neighbors is denoted as Ωt(p). Before the user interaction,

a pre-processing of texture analysis is done to cluster the

patches collected in the image. The calculations of the Ωt(p)
and wt

pq are based on these pre-computed clusters.

Texture Analysis: Since the value of λ(p) vanishes for

pixels which are away from any edge, the textural term E1

can be ignored at these pixels to speed up the texture anal-

ysis process. Therefore, we collect only the texture patches

whose centers are on the edges. These patches are then clus-

tered according to their appearance. Sometimes patches with

similar appearance belong to regions that are spatially apart.

Inspired by the texture analysis method in [MBLS01], we

further cluster those texture patches with similar appearance

according to their spatial relationship. Thus, our texture clus-

tering consists of two levels: appearance clustering and spa-

tial sub-clustering.

We first apply k-means clustering on all collected patches,

using Sum of Squared Distance (SSD) as the distance metric.

More sophisticated clustering techniques like expectation-

maximization (EM) have not shown significant improvement

in our experiments. In general, the cluster number is set

much larger than the number of color labels to guarantee that

the patches in one cluster are very similar in appearance.

(c)

(a) (b)

(d)

Figure 5: Illustration of spatial sub-clustering process. (a)
red squares show all the texture patches in one patch cluster.
(b) centers of the patches are connected to build a graph
(Delaunay Triangulation). (c) Distribution for the length
of the graph edges is shown by dark blue bar. Red line
represents the fitted Gaussian distribution. The position of
light blue line is the Éxpected Distancet́hreshold. (d) Two
sub-clusters obtained by spatial clustering are shown. Pur-
ple points represent patches of one sub-cluster while green
points for the other.

Any given cluster can then be further clustered accord-

ing to their spatial relationships. In Figure 5, we show an

example describing the details of sub-clustering. For all the

patches in one cluster (Figure 5(a)), we compute a Delaunay
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Cluster 1 Cluster n
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P� q�(j)

P�(j) P�(j)
Figure 6: Multi-patch decision. The color of the pixel p is
decided by all the patches that contains the pixel, such as
the blue patch P1 and the yellow patch P2. All such patches
belong to the patch clusters, shown as Cluster 1 and Cluster
n. The color likelyhood of p is accordingly decided by all the
patches in these clusters, shown as P1( j) and Pn( j). The set
of texture neighbors of p is formed by all the pixels in the
patches with the same relative spatial location as p (such as
q1( j) and qn( j)).

triangulation of the patch centers, shown in Figure 5(b). Next

we analyze the distances of the nearby nodes in the graph.

The rationale is that texture patches in the same cluster tend

to also form clusters in image space, and the outlier patches

tend to be remote. The distribution of distances of nearby

nodes is shown in Figure 5(c). We model this distribution as

a Gaussian N(gm,gv) and set the Expected Distance as gm +
2gv. All edges that are longer than the Expected Distance in

the graph are disconnected to form several subgraphs, which

are now represented as sub-clusters (see Figure 5(d)).

Multi-patch decision for Ωt(p): Now we need to find all

the texture neighbors of pixel p and form Ωt(p). Note that

we consider all the image patches that contain the p, not only

the one which is centered on it. Each patch that covers the

pixel p belongs to a patch cluster. We get all the patches that

belong such clusters, and take the pixels on the same relative

spatial positions of p to form the Ωt(p). As shown in Figure

6. Let Pk,k = 1, ...,n be the patches that contain the pixel p,

and {Pk( j), j = 1...m} be the set of patches that share the

same appearance cluster with Pk, m is the number of patches

in this cluster. Let qk( j) be the pixels in patches Pk( j) that

have the same relative spatial position as p in patch Pk. All

these qk( j) are included to compose the set Ωt (p,k) and

Ωt(p) =
S
k

Ωt (p,k).

Decide wt
pq using sub-clusters: When we compute wt

pq,

texture neighbors from the different sub-clusters get much

smaller weights than those from the same sub-cluster.

Specifically, for every texture neighbor q ∈ Ωt(p), if the

patch that contains p and the patch that contains q belong

to the same sub-cluster, wt
pq = 0.9/Z; while if they belong

to different sub-clusters, wt
pq = 0.1/Z. The Z is a normaliza-

tion constant to guarantee ∑
q∈Ωt(p)

wt
pq = 1.

Since we take patches from different sub-clusters as well

to define Ωt , we can colorize the same textures that are spa-

tially separated by drawing strokes in only one region.

2.4. Spatial neighbors Ωs(p) and ws
pq.

We follow [LLW04] to define Ωs and ws
pq. Ωs is defined as 8-

neighbors of a pixel and ws
pq = exp(

−(I(p)−I(q))2

2δ2 )/(∑
q

ws
pq).

In our implementation δ is set to 10.

2.5. Iterative Energy Optimization

The energy function in Equation 1 is solved by iteratively

propagating the L with both textural and spatial neighbors:

L0(C; p) =

{

(0, ...,1k, ...,0)T p ∈ strokek

( 1
N , ..., 1

N , ..., 1
N )T otherwise

(4)

Ln+1(C; p) = λ(p) ∑
q∈Ωt(p)

wt
pqLn(C;q)

+ (1−λ(p)) ∑
q∈Ωs(p)

ws
pqLn(C;q) (5)

Since the Ωs(p) is defined as the 8-neighbors of the pixel

p, the color label propagation along the spatial neighbors

is rather slow. To speed up, we over-segment the image to

super-pixels using the Mean Shift algorithm [CM02]. In-

stead of nearby pixels, we use the nearby super-pixels to

propagate the color labeling information to the current pixel.

Weights are decided by the intensities of adjacent pixels in

the nearby super-pixels. Figure 7(b)(c)(d) show the iterations

in the color labeling. For this image, L stops changing after

3 iterations to the result in Figure 7(d), using the iterative al-

gorithm with super-pixels. It would require more than 70 it-

erations without using super-pixels. Note that the super pixel

only extends the spatial neighbors of current pixel, the tex-

ture neighbors of current pixel remain the same.

When we get the label map after several iterations, it

is straightforward to assign each pixel the color label with

maximum likelihood, as shown in the Figure 7(d). However,

some color noises and color leaks near the boundary may

exist, for example, at the left edge of the roof. To refine the

color label, we use the α-expansion multi-label graph-cut al-

gorithm [BVZ01]. The labeling noise is suppressed and the

boundaries of color regions are enforced along the strong

roof edge in the gray-scale image, as shown in Figure 7(e).

2.6. Discussion

More experiments are done to validate the use of the smooth-

ness map and the sub-cluster in our labeling algorithm.

Smoothness map plays an important role in integrating

the texture-similarity constraint and the intensity-continuity
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Figure 7: The process of color labeling. (a) The user input strokes. (b) (c) (d) The color labels after the 1st, 2nd and 3rd
iterations. We can see that, with small number of input strokes, color labels are propagated to neighbor pixels with similar
intensity and remote pixels with similar texture pattern. (e) Color labeling after applying multi-label graph-cut.
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Figure 8: (a) The color label using constant λ, labeling
errors can be seen in the house and grass regions, which
are mainly due to the misclassification in texture features
in smooth locations. (b) The color label without sub-cluster,
large misclassified regions can be seen in the house and
grass region, since regions of house and grass are mixed in
feature spaces. (c) Our algorithm proves to be effective in
labeling the natural images.

constraint. We tried using a constant λ instead of the

smoothed edgemap as the weighting in our energy function.

Figure 8(a) shows the result using λ = 0.5. We can see errors

in both the grass region and house region, which is mainly

caused by misclassifications of the texture in a smoothed re-

gion. In our method, we use the smoothed edge map to set

λ(p) for the textural term. By putting more weights on the

spatial term in the smooth region, the labeling information

from spatial neighbors helps to correct some mistakes from

textural space. Thus we can get a better labeling result as

shown in Figure 8(c).

Using sub-clustering is another novel idea in our algo-

rithm. Figure 8(b) shows the result without using spatial

sub-clustering. We can see many misclassified regions in the

house and grass parts. Using sub-clustering, the house region

and the grass region can be well divided into two different

sub-clusters. By weighting less the information from differ-

ent sub-clusters, we can get a better labeling result as shown

in Figure 8(c).

3. Color Mapping

In this section, we show an simple yet effective step that en-

ables users to generate rich colorization with vivid colors.

We call this step Ćolor Mapping.́ Figure 9 shows the color

mapping process.

Once a region is selected, the user chooses a few pixels as

shown in the top image of Figure 9(b). These pixels represent

a significant luminance variation in the region. Each pixel is

then given a corresponding color by the user, as shown in

Figure 9(c). The chroma (UV) values for any other pixels are

then interpolated by piece-wise linear mapping in luminance

(Y) space to get a color palette, as shown in Figure 9(d).

More sophisticated non-linear functions have been tried but

have not shown much improvement in our experiments. The

color mapping result of the selected region is shown in the

bottom image of Figure 9(b).

Note that in our system, the final colorization result is not

a hard composite of each colorized region. After colorizing

the regions, we do a soft blending around the region bound-

ary to make the color transition natural, as shown in Fig-

ure 9(f). Over a band along the boundary, we run the inten-

sity continuity term in Equation 1 to get a blending weight

for each label. The final color in this boundary region is the

weighted average of the colors for each label. This enables

our system to colorize the fine structures in the image.

We have designed an easy-to-use UI for colorizing. When

a user clicks a pixel in the image, the corresponding labeled

region is selected. Then the user can choose an appropriate

color for this specified pixel. This action is shown in the at-

tached video. Our UI allows the user to go back and forth

c© The Eurographics Association 2007.
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(f)(b) (c) (d)(a) (e)
Figure 9: Illustration of color mapping process. (a) Color label is directly blended with the gray image. (b) Top: the region of
mountain is selected for color mapping. The user chooses three pixels to assign colors for this region. Bottom: the mountain
after color mapping. (c) Three pixels with their intensity values from the image. Their corresponding colors specified by the
user are shown on the right. (d) From the three known pairs, colors for all the possible intensities are interpolated, shown with
the two bars here. (e) The final image after color mapping all the regions. (f) Zoom-in views of regions where soft blending
between nearby regions is applied.

Figure 10: We can obtain various colorization effects from only one color label using our color mapping tool. Here we show an
example. Left image shows a natural image with highly textured regions. Middle and right images show different colorizations
using our system.

easily to see the original image, color labels, blended image,

and partially finished colorized image.

Compared with other stroke-based colorization methods,

our color mapping is effective in editing the final effect. In

most cases, users do not know exactly what color to use in

each location before they preview the effect. By separating

the colorizing process from the labeling process, users can

edit in realtime the color in each region. Users can also ob-

tain different colorizing effects of an image once its color

labels are obtained. Figure 10 shows the impressive results

we get for a single natural image. Moreover, our color map-

ping step can overcome small amount of inaccuracy in color

labeling, we do not assume perfect color labeling for images

with complex textures.

4. Local Refinement

Our system works well on many images such as those on

Figures 2 and 9. With the casually specified strokes, our

global optimization labeling algorithm can find a sufficiently

good label map for colorization. For images with more com-

plex textures, however, texture misclassification may still

cause problems, as shown in Figure 11. Recognizing that

there are inevitable mistakes in texture clustering, we have

designed two simple UI’s to help the user to interactively

correct the color labeling.

For instance, some yellow flowers were missing at the bot-

tom of image in Figure 11. The user may not be satisfied with

the incorrectly labeled regioin. He can draw a short stroke

with the correct color, then a local optimization of energy in

Equation 1 using the surrounding areas of the strokes would

be run to get the desired color labels, as shown in Figure

c© The Eurographics Association 2007.
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(b)(a)

(d)(c) (e)

(f) (g) (h)

Figure 11: Two UI’s for local refinement. (a) An image with
user specified strokes. (b) Colorization result before local re-
finement. (c)-(e) show an example of using short stroke tool
for refinement. A yellow stroke is drawn inside the green re-
gion (d), here we use a green line to highlight the small yel-
low stroke on the flower. Local optimization is applied to
propagate the yellow color label and obtain the desired re-
sult (e). (f)-(h) show an example of using the rectangle tool
for refinement, in (g) a rectangle is drawn indicating the er-
ror in this specific region. Local optimization runs inside the
region to get a better colorization (h).

11. Pixels on the stroke drawn by the user are used as hard

constraints (with yellow labels) in the optimization.

As shown in the Figure 11(f), some patches near the in-

verted reflection of the tree cannot be distinguished with

patches in the flower region, which results in some errors

in the color labeling. the user can also draw strokes to cor-

rect the label, but this time the label cannot be easily cor-

rected with one or two of strokes. Instead, we designed an-

other simple UI for the user to draw a rectangle (or “grab"

like in [RKB04]) which includes the erroneous pixels and

correctly labeled pixels with the desired color. Equation 1 is

optimized only for the indicated region to refine the coloriza-

tion. By confining the optimization in a local region, we pre-

vent the propagation of error information from the outside

of the region. Thus a better label map can be obtained. The

result is shown in Figure 11(h). Sophisticated selection tools

other than a rectangle can also be used.

Note that after the color mapping step, most of the label-

ing problems become unnoticable in the colorization. We do

not need a perfect segmentation to get a nice colorization

result. The user can usually get satisfactory results with a

rather small number of refinement.

5. Experiments

The clustering (pre-processing) time depends on the patch

size, the number of edge pixels and the cluster number. For

all the images in our experiment we use cluster number 500,

which shows to be sufficient for images with different level

of complexity. Patch size is manually select which roughly

equals the largest size of texture element in the image. The

width of the square patch used in the examples are: 13 (Fig-

ure 2), 17 (Figure 10), 13 (Figure 12), 17 (Figure 13), 19

(Figure 14), 9 (Figure 15), 11 (Figure 16(a)), 15 (Figure

16(c)), 19 (Figure 16(e)), respectively. For the image(size of

262× 392) in Figure 2 with the edge map shown in Figure

4 and the patch size 13× 13, the time for clustering is about

2 minutes on a Pentium 4 3GHz PC. Each iteration in opti-

mization requires 0.7 second. It took 3 iterations (less than 3

seconds) to get a satisfactory color label for this example. All

the examples in this paper require no more than 10 iterations

to be stable. Color mapping for all the examples is done in

real-time. Local refinement has also been done interactively

as shown in the video.

We show a number of examples to demonstrate the effec-

tiveness of our approach.

In Figure 12 we compare our method with some previous

methods. We show that with 10 interactions (3 strokes(in(a))

+ 1 local refinement + 6 specified color pixels), we obtain

a compelling colorization in (b). For a fair comparison, we

also use 10 interactions for other methods. Using 10 strokes

as shown in (c), (We tried many sets of strokes, this is the one

with the best colorization) we show the colorization results

of Welsh et al. in (d) [WAM02], Levin et al. in (e) [LLW04],

and Yatziv et al. in (f) [YS06]. we can see that the stroke-

based method like Levin’s method and Yatziv’s method can-

not colorize the texture regions of the image properly within

10 interactions, resulting in many visible mis-colored re-

gions particularly for trees and rocks. In the experiment of

Welsh’s method, we use the region under the user stroke

as the swatch described in [WAM02]. We also use patches

with size of 13×13, as in our k-means clustering. In Welsh’s

method, the patch distance is not sufficient to distinguish the

different regions, especially the sky region and the grass re-

gion as shown in Figure 12(d).

Labeling methods based solely on intensity would fail in

identifying the texture boundary. We can see in Figure 13(b)

that Lazy Snapping [LSTS04] cannot catch the boundary

around the wall, while our method perfectly segment this

region (Figure 13(c)). We show the final colorization result

of our method in Figure 13(d).

As discussed previously, using existing methods to obtain

results with vivid color is not a simple task. We demostrate

this in Figure 14. Even with several carefully chosen strokes

that well labeled the image, the colorization still looks flat

and unnatural in Figure 14(a). Of course, one can add more

tiny strokes with different colors to create color variation in
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(c)

(e) (f)

(a) (b)

(d)

Figure 12: Comparison of different colorization methods. For comparison proposes, we use a total 10 of actions in all the
methods. Using ten operations (3 strokes(in(a)) + 1 rectangle refine + 6 color specified color pixels), we get a nice colorization
result shown in (b). With the ten strokes in (c), we tried Welsh’s [WAM02], Levin’s [LLW04] and Yatziv’s [YS06] methods,
results are shown in (d), (e), and (f).

(a) user strokes (d) ��� ������ ����� ����� �������
� ! "#$%&'() *$ +*,-" #+.(*) (.,-" %,/+* ,-)+-.,)0

�'! 1(# *$ +*,-" #+.(*)
Figure 13: Comparison with lazy snapping. Here we show a relative simple foreground segmentation case that lazy snapping
would fail due to the lack of texture feature. (a) shows the user interaction, (b) is the result by lazy snapping, we can see that
lazy snapping fails on the texture boundary around the wall, since only itensity distribution is considered in their likelihood for
graphcut. Our method can well handle the texture boundary as shown in (c). We show our final result after color mapping in
(d)

each region (Figure 14(b)). However, it is very hard to spec-

ify the location and the color for hundreds of strokes, espe-

cially without the aid of an interactive preview. The example

in Figure 1(b) shows one attempt to get the vivid effect, and

the result is still unsatisfactory. We show our result in Fig-

ure 14(c), with only 17 interactions (7 strokes + 10 specified

color pixels), we can get a compelling colorization effect.

In Figure 15 we compare our algorithm with the Manga
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234 56789:; <6;=>? @ 2A4 56789:; <6;=>? B 2C4 D=< <6;=>?
Figure 14: Comparison with Levin’s method [LLW04]. The first row shows the input strokes, the second row shows the col-
orization results. Using Levin’s method, it is tedious to get a vivid colorization as in the genuine natural scene. We can see in
(a) that strokes well segmentat the image is not sufficient for a vivid colorization. An attempt is made to specify variant colors
in different locations in the image. It is still hard to get a satisfactory colorization(as shown in (b)). We show our colorization
result in (c). Compelling effects can be easily achieved using small number of interactions.

colorization method [QWH06]. The manga method failed in

the inhomogeneous texture region, as shown in Figure 15(b).

Since we only use the local decision of neighbors in our la-

beling scheme, we can handle the inhomogeneous texture in

images, and the result is shown in Figure 15(c) Moreover,

we use the patch appearance distance instead of statistical

features for texture analysis, which enables us to colorize

the texture region with multiple colors. We can see that us-

ing strokes shown in Figure 15(d), we can get the result as

in Figure 15(e). This is the unique property of our method.

(Note that in this example, we add three white strokes for the

flat white regions in order to label the entire image).

To demonstrate the effectiveness of our method in col-

orizing the texture pattern, we show more examples of col-

orizing texture using multiple colors in Figure 16. As dis-

cussed previously, it would be rather hard for user to col-

orize these type of textural regions using previous methods

[LLW04, QWH06]. In these images, each tiny region inside

the texture region requires a new color, which means the

user needs to carefully add strokes in all the regions. In our

method, the user only needs to colorize an example pattern

in the texture region, so that the rest of the similar patterns

would be colorized based on the given example. Interactions

are largely reduced in our system.

The peacock example in Figure 16 also shows the limi-

tation of our approach: those regions that are not properly

labeled is not colorized correctly. Notice that toward the

left side of the tail of the peacock, some smaller-scale pat-

terns are not well colorized with current strokes and a small

amount of local refinement. Surely the user can make a bet-

ter colorization if he spends more time on locally refining

the result, which is out of the scope of the effectiveness of

our labeling algorithm.

6. Summary and Discussion

In this paper, we present an interactive system for coloriza-

tion of natural images. We show compelling colorization re-

sults of natural images with highly textured regions. These
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(b)(a) (c) (e)(d)

Figure 15: Comparison with Manga Colorization: (a) Strokes used in the paper of Manga Colorization (plus 3 white strokes
for the flat white regions in order to get the label of the entire image). (b) Result by Manga Colorization. (c) Our result using
strokes in (a). One key property of our method is colorizing texture with multiple colors, as shown in (d)-(e). c©T.T.Wong/CUHK

natural images are very difficult to colorize by previous col-

orization methods.

Our method labels an image with colors associated with

strokes drawn on the image by the user. We introduce

a novel energy optimization framework that incorporates

both intensity-continuity and texture-similarity constraints

to cluster the image into a number of coherent regions, indi-

cated by distinctive colors. Then, for each coherent region,

we assign colors to a few chosen pixels, and then color map

the rest of pixels in the region.

By separating the color labeling from the color mapping,

the interaction of colorization becomes more intuitive for

users. What users need to do for color labeling is to spec-

ify, with several strokes, some meaningful objects or regions

to be labeled, whether it is the sky, or a flower field, or a

lake. Specifying colors at a few pixels for color mapping is

effective in getting satisfactory final results.

Good colorization results using our system are, first of all,

due to the success of color labeling. Although we do not

need sub-pixel accuracy boundary segmentation for the pur-

pose of colorization, our novel energy optimization frame-

work makes it possible to label the image into color and tex-

ture coherent regions that can be easily colorized. Although

texture clustering may never be perfect, small errors result-

ing from our color labeling step can be easily corrected, by

interactively refining incorrect labeled local regions using

our easy-to-use UI tools.

In the pre-processing phase, we used texture patches with-

out consideration of scale, orientation or transformation. As

shown in the saree example in Figure 16, we had to draw

multiple strokes on similar patterns with different orienta-

tions and scales to obtain good colorization results. In the fu-

ture, we plan to study how to incorporate more sophisticated

texture clustering techniques such as epitomes [JFK03] to

further improve the usability of our system.
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