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Abstract. With the vast expansion of digital contemporary painting
collections, automatic theme stylization has grown in demand in both
academic and commercial fields. The recent interest in deep neural net-
works has provided powerful visual features that achieve state-of-the-art
results in various visual classification tasks. In this work, we examine the
perceptiveness of these features in identifying artistic styles in paintings,
and suggest a compact binary representation of the paintings. Combined
with the PiCodes descriptors, these features show excellent classification
results on a large scale collection of paintings.

1 Introduction

As digital acquisition of artistic images has advanced, vast digital libraries have
been assembled over the Internet and in museums. With the development of
recent automatic image analysis and machine vision techniques, the mission of
artistic resource discovery is no longer left to the human expert. Automatic art
identification and classification support the expert’s mission of painting anal-
ysis, assist in organizing large collections of paintings and can be used for art
recommendation systems.

Artistic visual styles such as impressionism, baroque and cubism have a set
of distinctive properties which permits the grouping of artworks into related art
movements. Therefore, every artwork has a visual style idiosyncratic ”signature”
which relates it to other works.

Style divisions are often identified and later defined by art experts and his-
torians. This division is not a strict one; in many cases a style can span across
many different painters where a single painter might span across several styles.
Pablo Picasso, for example, painted in both surrealism and cubism styles. Some
of these styles may be easily recognized by human art enthusiasts or experts
while others are more subtle [1].

Visual style is not rigorously defined, but can be deduced from visual motifs
present in a painting such as the choice of color palette, composition, scene,
lighting, contours and brush strokes [2]. Yet, there has been little research in
computer vision that explored style classification in recent years.

In this work, we investigate several known visual descriptors that attempt to
extract these subtle artistic properties. These techniques serve as a benchmark
for our approach and include gradient histograms, color histograms, statistical
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methods [3], LBP [4], dictionary-based methods ([5], [6]) and pyramid based
methods ([7], [8], [9], [10] [3]).

The ”Picture Codes” (PiCoDes) [11] learns a compact binary code represen-
tation of an image optimized on a subset of ImageNet dataset [12], and is one
of the leading methods tested.

Deep learning refers to generative machine learning models composed of mul-
tiple levels of non-linear operations, such as neural networks consisting of many
layers. The deep architecture enables the generation of representations of mid-
level and high-level abstractions obtained from raw data such as images.

Convolutional neural networks (CNNs) are feed-forward networks that can
be learned efficiently, and recent results indicate that the generic descriptors ex-
tracted from CNN are very powerful and provide a breakthrough for recognition
[13],[14].

In this work, we try to recognize the style of paintings using features extracted
from a deep network, as well as PiCoDes and low-level descriptors. Combining
features extracted from a deep network with PiCoDes yields a strong descriptor
that outperforms all other tested descriptors while remaining compact.

The work that is most closely related to our work was done by Karayev et al.
[15] on a variant of the artistic dataset we have used in this paper and using sim-
ilar classes. However, in [15] small classes (less then 1000 images) are omitted,
while we keep a more varying distribution. We use a low-dimensional binary de-
scriptor, and analyze performance by average precision, average recall, F1-score
and classification accuracy. We combine different descriptors by concatenation
or re-ranking based on the Borda count [7] and compare them to a broad set of
methods.

An overview of the previous work is given in Section 2 , Section 3 describes
the convolutional neural networks and our approach is explained in Section 4.
Experimental setup is given in Section 5 followed by discussion on results in
Section 6. Final conclusions are drawn in Section 7 .

2 Related Work

Readily available digitized art paintings data has been available for a few years,
gaining more and more attention from researchers.

The related problem of artist identification within a specific style (Renais-
sance) was explored in [16] using the HOG descriptor. In [17], idiosyncratic
characteristics of Van Gogh paintings were explored based on the artist’s brush
strokes. Stylization recognition is explored in [18] and [19] on smaller datasets
with fewer classes compared to the dataset we use here. In [18], the dataset ex-
plored contains visually distinguishable artworks painted by a handful of painters.
Each painter is associated with a different school or style. The dataset tested in
[19] contains seven styles with less than a hundred images per style.

Comparative study of different classification methodologies for the task of
fine-art style classification are covered in [3] and [20]. Several standard classifiers
and features extraction techniques are explored in [3], inspired by visual cues
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in painting such as gradient and statistical measures. In [20], discriminative
and generative classification models are covered using intermediate level features
(Bag of Words) and Semantic-level features. The datasets tested in [3] and [20]
covers only a handful of styles with less than a hundred images per style.

In [15], deep features from the CNN in [21] are applied on large scale datasets.
The conclusion arising from the experiments is that features extracted from deep
architecture networks produce excellent classification performance on several
large-scale datasets, including a dataset of paintings.

2.1 Low-Level Descriptors

Edge texture information [3]. The relative frequency of edges within a paint-
ing can be very informative. While impressionism is characterized by blurry and
subtle edges, in analytical cubism and pop art the edges are very pronounced.
The edge descriptor of an image is computed as the number of pixels that are
labelled as an edge relative to the total number of pixels, extracted by the Canny
edge detector for different sensitivity thresholds (0.2, 0.3, 0.4 and 0.6). Conse-
quently, strong edges would be present in the image for any threshold level, while
the subtle transitions would only show up for lower thresholds.
Texture information descriptor based on Steerable Filter Decomposi-
tion (SPD) [3],[22]. Steerable Filter Decomposition approximates a matching
set of Gabor filters with different frequencies and orientations. The descrip-
tor is 28-dimensional, consisting of the mean and variance of a low pass filter,
a high pass filter, and 12 sub-band filters from three scales and four orienta-
tion decompositions. The mean and variance roughly correspond to the sub-
band energy and characterize the artist brush strokes. The code is available in
http://live.ece.utexas.edu/research/quality.
Color histogram [3]. The color histogram is described by a concatenation of
three normalized 8-bin histograms, one per each HSV channel.
Statistical measures [3]. A concatenation of the mean, variance, skewness and
kurtosis for each HSV channel.
Local Binary Patterns (LBP) [4]. LBP texture features are known for ef-
fective face recognition that can assist in scene and image texture classification.
LBP texture features also perform well for face detection and are helpful in dis-
tinguishing portrait and non-portrait images [23]. The descriptor is derived by
(a) dividing the image into cells (16× 16 pixels for each cell), (b) for each pixel
in a cell, the 3 x 3 neighborhood surrounding the pixel is thresholded with the
central pixel intensity value, treating the subsequent pattern of 8 bits as a binary
number, (c) a histogram is computed over the values in each cell and (d) the
concatenation of the histograms of all cells forms a descriptor.
Dictionary-based descriptors [5],[6]. The bag-of-words model is applied to
image classification by treating image features as words. Initially, a dictionary of
visual ”words” based on local feature descriptors is constructed using k-means
and later compared against visual ”words” (local features) of an image. The
statistics of visual words occurrences are summarized in a sparse histogram.

http://live.ece.utexas.edu/research/quality
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Typically, local features are obtained using SIFT [24]. Fisher vectors serve a
similar purpose of summarizing statistics of visual words, with two distinctions
– the dictionary is obtained by Gaussian Mixture Models (GMMs), and rather
than storing only visual word occurrences, the difference between dictionary
words against the pooled image visual words is stored.
GIST [9],[25]. GIST is known to perform well for retrieving images that are
visually similar at a low resolution scale, and consequently can represent the
composition of an image to some extent. The descriptor is derived by resizing
an image to 128 x 128 and iterating over the different scales where for each
scale the image is divided into 8 × 8 cells. For each cell, orientation (every 45
degrees), color and intensity histograms are extracted, and the descriptor is a
concatenation of all histograms, for all scales and cells. The code is available at
http://people.csail.mit.edu/torralba/code/spatialenvelope

PHOG [8],[26]. Histogram of Oriented Gradients (HOG) is used for the purpose
of object detection by counting occurrences of gradient orientation in localized
portions of an image. The image is first divided into cells and for each cell a his-
togram of gradient directions or edge orientations is extracted. Concatenating
all histograms forms a HOG descriptor. When this process is done on different
scales, it is called Pyramid Histogram of Oriented Gradients (PHOG) and is
known to perform well for scene categorization, which is required for some of the
styles considered in this work.

The code is available at http://www.robots.ox.ac.uk/~vgg/research/

caltech/phog.html.
SSIM [10]. A method of extracting a ”local self-similarity” (SSIM) descriptor
is depicted in [10]. While many methods measure the similarity among images
by using common underlying visual properties, a SSIM descriptor captures inter-
nal geometric, color, edges, repetitive patterns and complex textures in a single
unified way while accounting for small local affine deformations. That is, the
descriptor captures spatial similarities between regions of different texture and
color. The code is available at http://www.robots.ox.ac.uk/~vgg/software/
SelfSimilarity.
Color Quad Trees (CQT) [7]. A quad tree is a tree data structure. The root
represents the entire image, the second level contains four nodes each represent-
ing one quadrant of the image and so on, until the final level of the tree. For each
node, the mean is computed over the pixels intensity values connected to the
node. Concatenating all measurements level by level forms the CQT descriptor.
This descriptor can be used to represent the composition of an image such as an
outdoor landscape or a portrait to some extent.

2.2 Binary Compact Image Representations

PiCoDes binary features [11],[27]. A compact binary vector that is opti-
mized to yield good categorization accuracy. As a preliminary step, an offline
transformation matrix is learned as a non-linear combination of classifiers over
features such as Bag of SIFTs, GIST, PHOG, and SSIM. The PiCoDes binary

http://people.csail.mit.edu/torralba/code/spatialenvelope
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity
http://www.robots.ox.ac.uk/~vgg/software/SelfSimilarity
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image descriptor is computed by transforming the image data using the offline
matrix such that the binary entries in the descriptor are thresholded projections
of low-level visual features extracted from the image.
MC-Bit binary features [28],[27]. A descriptor learned as a non-linear com-
bination of classifiers over the same bank of features is described for PiCoDes.
While the classifiers of PiCoDes are jointly computed via an expensive iterative
optimization that limits the actual number of classifiers (tested on a maximum
of 2048 classifiers), the MC-bit classifiers are efficiently computed via recursive
parallel optimization. Thus, the descriptor size can be scaled up.
VLG extractor was used for extracting both PiCoDes and MC-bit descriptors
(http://vlg.cs.dartmouth.edu/picodes/PiCoDes/Home.html)

3 Deep Architecture Network

Deep neural networks have recently gained considerable interest due to the de-
velopment of convolutional neural networks (CNN) that can be solved efficiently
on large-scale datasets using limited computation capacity. The strength of deep
networks is in learning multiple layers of concept representation, corresponding
to different levels of abstraction. For visual datasets, the low levels of abstrac-
tion might describe edges in the image, while high layers in the network refer to
object parts and even the category of the object viewed.

CNNs constitute a feed-forward family of deep networks, where intermediate
layers receive as input the features generated by the former layer, and pass their
outputs to the next layer.

Two popular choices are CNNs suggested by [21] and [29] for the Large Scale
Visual Recognition Challenge of Imagenet [12], a large scale image database
consisting of more than one million images categorized into 1000 classes. The
features extracted from intermediate layers of these networks produce highly
discriminative features that achieve state-of-the-art performance in visual clas-
sification tasks [13],[14].

The DeepFace architecture developed in [30] is another example of a success-
ful CNN that achieves human accuracy in face recognition.

These CNNs are constructed of a few layers that learn convolutions, inter-
leaved with non-linear and pooling operations, followed by locally or fully con-
nected layers.

4 Our Approach

Our baseline descriptors are extracted from Decaf implementation [31] of a CNN
trained on Imagenet, following the CNN in [21]. We use the notation of [31] to
denote the activations of the nth hidden layer of the network as Decafn, and use
the Decaf5 and Decaf6 features as well as the final output of 1000 predictions.
Decaf5 contains 9216 activations of the last convolutional layer, and Decaf6

contains 4096 activations of the first fully-connected layer.

http://vlg.cs.dartmouth.edu/picodes/PiCoDes/Home.html
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4.1 Encoding Scheme

Following PiCoDes ([11], [27]), we suggest a compact binary encoding over the
baseline descriptors that is designed to distinguish among different categories.
Given a dataset classified into k categories and represented by a d-dimensional
descriptor, our algorithm learns a d′-dimensional representation, where d >> d′

and d′ is a multiplicative of k, that is d′ = tk.
The encoding algorithm works as follows:

First, a subset of the training set is generated by randomly choosing an equal
number of examples per class (25 examples per class in our experiments).

This subset is used to learn k linear SVMs in a One-vs-All manner – the ith

classifier is trained on m positive examples from class i and m negative examples
randomly selected from all other classes (m = 15 in our experiments).

We learn t One-vs-All SVMs, that are each trained on different examples and
generates k new binary classifiers. That is, we learn a total of d′ binary classifiers
with t classifiers per class.

For a new example x, define pi(x) as the binary decision of classifier i,
pi(x) = 1{wix − bi}. The d′-dimensional encoding of x is (p1(x), . . . , pd′(x)),
the concatenation of the binary decisions of all classifiers on x.

Our dataset has 27 classes and we empirically set t to 15. Hence, the length
of Decaf5, for example, is reduced from 9216 dimensions to only 405 dimensions.

5 Experiments

Dataset. We use a subset of the WikiArt dataset which was collected from
the visual art encyclopedia www.wikiart.org , a complete and well-structured
online repository of fine art [32]. The collection describes 40,724 unique digitized
paintings with variable resolution. Each painting is labelled with a subset of the
following metadata, specifying the artist name and nationality, art movement
(style), year of creation, material, technique, painting dimensions and the gallery
it is presented at. Style label, however, is present in all paintings.

The collection covers over a thousand different artists and is categorized to
27 art styles. Figure 1 shows our dataset styles distribution. A small subset of
less than 2% of the dataset is used to train the classifiers for the binary encoding,
all other examples are used for multiclass classification.

Multiclass classification A three-folded cross validation was used. We ap-
plied popular machine learning classifiers – SVM, Adaboost, Nave Bayes and
kNN and chose empirically the 5-NN classifier since it produced the best results
among descriptors that were tested.
Accuracy Metrics We measure the success of the multiclass classification by
the following measures:

– Classification accuracy – the rate of correctly classified examples out of all
examples.

www.wikiart.org
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Fig. 1. Distribution of the image styles

– Precision and Recall – the precision of a class c is the proportion of images
that are indeed in c out of the images predicted as c by the classifier, and
recall is the proportion of images in c that are classified correctly. We report
the average precision and recall over all classes. While accuracy is biased to
larger classes, the average precision gives equal weight to all classes regardless
of their size.

– F1-score combines recall and precision, computed as 2precision×recall
precision+recall .

Descriptors Fusion We use two approaches to combine different descriptors.
The early fusion method combines the different descriptors before applying clas-
sification. The late fusion refers to assembling classification results based on the
different descriptors.

For early fusion, we simply concatenate the descriptors. Since the range of
values of raw data varies widely, the values of each feature are normalized to
zero mean and standardized to unit variance.

In the late fusion approach, the features of each descriptor are learned sepa-
rately and their outputs are then merged. We adapt a re-ranking method based
on a Borda count [7]. The Borda count is a single-winner election method in
which voters rank options or candidates in order of preference. Once all votes
are counted, the candidate that gained the highest number of points is the win-
ner. In this work, the voters are the classifiers trained on different descriptors
and the candidates are styles. For a given test image, kNN finds for each de-
scriptor, the five closest images. We score the style results of those images in a
descending order (5 to 1) and perform a maximum points scored vote based on
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Table 1. The performance of multiclass classification on the paintings dataset when
using low-level descriptors

Descriptor Dim. Average Average F1-Score Accuracy
Precision Recall

Edge texture information [3] 4 0.09 0.07 0.08 0.14

SPD [3],[22] 28 0.17 0.14 0.15 0.22

Color histogram [3] 24 0.14 0.11 0.12 0.20

Statistical measures [3] 12 0.09 0.07 0.08 0.14

LBP [4] 59 0.18 0.15 0.16 0.23

Bag Of Sifts [5] 500 0.17 0.13 0.15 0.22

Fisher Vectors [6] 1024 0.11 0.10 0.10 0.15

GIST [9],[25] 512 0.16 0.13 0.15 0.21

PHOG [8],[26] 336 0.13 0.10 0.11 0.19

SSIM [10] 1024 0.13 0.09 0.11 0.13

CQT [7] 1023 0.12 0.09 0.10 0.13

the scores given by all descriptors.

Code. The entire code was implemented in Matlab using VLFEAT frame-
work www.vlfeat.org. The Decaf feature extraction part is obtained from Decaf
CNN [31].

6 Results

Table 1 shows the performance of low-level descriptors. LBP, SPD and SIFT
descriptors achieve the best performance in terms of accuracy. Empirically, de-
scriptors that achieve the highest accuracy also achieve high scores in the other
metrics. Therefore, we analyze the results based on accuracy and the other met-
rics are reported in the supporting tables. Table 2 shows PiCoDes with various
dimensions and MC-bit descriptor. Not surprisingly, both descriptors outper-
form all low-level features since they are learned in an optimized way over a
combination of powerful low-level descriptors.

In Table 3, the results of the Decaf CNN descriptors with and without binary
encoding are presented. Similarly to the results in Table 2, the deep features
outperform all low-level descriptors tested.

In Table 4, several forms of features fusion are examined, incorporating com-
binations of low-level descriptors, PiCoDes descriptors and Decaf CNN descrip-
tors. Examining both early fusion (EF) and late fusion (LF) approaches, we
reported only LF results as both of them gave similar results.

The best features fusion descriptor incorporates PiCoDes (2048-dimensionality)
and Decaf6 (4096-dimensionality), and has a 43% accuracy, a 6% increase over
the best result of single descriptors.

Table 5 shows several forms of binary features fusion results that incorpo-
rates combinations of PiCoDes descriptors and encoded Decaf CNN descriptors.

www.vlfeat.org
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Table 2. The performance of multiclass classification on the paintings dataset when
using binary compact image representations

Descriptor Dim. Sparsity Average Average F1-Score Accuracy
Ratio Precision Recall

PiCoDes [11] 128 0.44 0.21 0.16 0.18 0.24

PiCoDes [11] 1024 0.53 0.37 0.26 0.31 0.35

PiCoDes [11] 2048 0.45 0.38 0.29 0.33 0.37

MC-bit [28] 15232 0.70 0.31 0.25 0.28 0.32

Table 3. The performance of multiclass classification on the paintings dataset when
using Decaf CNN and encoded Decaf CNN descriptors. The sparsity ratio is the average
number of zero elements within the descriptor

Descriptor Dim. Type Sparsity Average Average F1- Accuracy
Ratio Precision Recall Score

Decaf predictions [31] 1000 Real 0.26 0.19 0.15 0.16 0.21

Decaf6 [31] 4096 Real 0.00 0.38 0.31 0.34 0.37

Decaf5 [31] 9216 Real 0.72 0.42 0.26 0.32 0.35

Encoded Decaf6 405 Binary 0.65 0.30 0.27 0.28 0.34

Encoded Decaf5 405 Binary 0.54 0.27 0.23 0.25 0.31

Table 4. Multiclass classification performance results when using features fusion on
the paintings dataset. All results for Late-Fusion approach. We use the following ab-
breviation: PD - PiCoDes

Descriptor Dim. Type AP. AR. F1. Accuracy

HSV + LBP + SPD 111 Real 0.21 0.14 0.17 0.25

GIST + PHOG + SSIM + BOW 2372 Real 0.32 0.15 0.21 0.26

Decaf6 + LBP + SPD 4183 Real 0.42 0.25 0.31 0.35

Decaf6 + GIST 4608 Real 0.41 0.29 0.34 0.37

PD-2048 + LBP +SPD 2135 Real 0.43 0.24 0.31 0.35

PD-2048 + Decaf5 + Decaf6 15360 Real 0.56 0.32 0.41 0.39

PD-2048 + Decaf6 6144 Real 0.48 0.36 0.41 0.43

PD-1024 + PD-2048 + Decaf6 7168 Real 0.44 0.29 0.35 0.37

PD-1024 + PD-2048 + Decaf5 + Decaf6 16384 Real 0.50 0.34 0.41 0.42

Each combination is reported for both early fusion and late fusion. All combi-
nations show excellent results in terms of accuracy and descriptor compactness,
matching or surpassing non-encoded features fusion results. The best features
fusion descriptor incorporates PiCoDes (1024-dimensionality), PiCoDes (2048-
dimensionality), encoded Decaf5 (405-dimensionality) and encoded Decaf6 (405-
dimensionality) and matches the best (non-encoded) features fusion result using
a binary descriptor with 63% compression.
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Table 5. Multiclass classification performance results when using binary features
fusion on the paintings dataset. We use the following abbreviations: EF - early fusion,
LF - late fusion, PD - PiCoDes and Enc - encoded

Descriptor Dim. Fusion Average Average F1- Accuracy
Precision Recall Score

PD-2048 + Enc. Decaf6 2453 EF 0.43 0.34 0.38 0.41

PD-2048 + Enc. Decaf6 2453 LF 0.43 0.34 0.38 0.41

PD-2048 + Enc. Decaf5 + 2858 EF 0.43 0.36 0.39 0.42
Enc. Decaf6
PD-2048 + Enc. Decaf5 + 2858 LF 0.43 0.33 0.38 0.41
Enc. Decaf6
PD-1024 + Enc. PD-2048 + 2239 EF 0.42 0.36 0.39 0.42
Enc. Decaf5 + Enc. Decaf6
PD-1024 + Enc. PD-2048 + 2239 LF 0.46 0.34 0.39 0.42
Enc. Decaf5 + Enc. Decaf6
PD-1024 + PD-2048 + 3882 EF 0.42 0.36 0.39 0.42
Enc. Decaf5 + Enc. Decaf6
PD-1024 + PD-2048 + 3882 LF 0.47 0.34 0.40 0.43
Enc. Decaf5 + Enc. Decaf6

A greater breakdown is illustrated in Figure 2 by showing the confusion
matrix of our best features fusion.

Different painting styles share similarities of color, composition and texture
as well as sharing the object of the painting (e.g. still life, landscape, portraits
etc.). Thus, misclassification between closely related styles occur quite often. A
closer look in Figure 2 reveals the quality of classification. Confusion between
relatively unrelated styles might occur. For example, Fauvism and Cubism are
visually distinct as fauvism uses strong colors while cubism uses bland colors. In
cubism objects are often reduced to their geometric form in a non-realistic way
while fauvism is a more realistic simplified style. Cubism is precisely rendered
while fauvism is loose and minimal. However, misclassification errors tend to oc-
cur significantly more frequently among closely related groups of styles, reflecting
subtleties within these styles. Several examples are Renaissance styles (such as
Early Renaissance, Late Renaissance, High Renaissance and Northern Renais-
sance) and Cubism related styles. Styles that are influenced by other styles in
terms of visual motifs (continuation, branching out or reaction movement) also
tend to get confused, such as Abstract Expressionism and Color Field Paint-
ing, Minimalism and Color Field Painting or Impressionism and Realism. For
example, Color Field painting is referred as an extension of Abstract Expres-
sionism paintings; both are abstract and express a dramatic use of colors. Figure
3 qualitatively demonstrates these relations through the confusion matrix, by
rearranging the order of the styles so that groups of related styles are clustered
together.
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Experimentally, our best features fusion descriptor has the ability to find
similarities within the style or even within the genre without over-tuning to a
specific set of visual cues. For example, Portrait and landscape images appear
in about half of the styles, yet performing a landscape/portrait image search of
a specific style works well and landscape/portrait images of the same style are
retrieved.

7 Conclusions

In this work, we suggest a representation of paintings that is both simple and
efficient. We applied Decaf, a novel deep network trained on a comprehensive
real-life ImageNet dataset to a problem of a different nature, known as art styl-
ization. Style recognition differs from the task of object recognition, since two
paintings can describe the same scene (e.g. a landscape painting of a marina)
using very different artistic techniques. For example, a realistic painting as op-
posed to pointillism, a technique of painting in which small, distinct dots of
pure color are applied to form a painting. For efficiency, we suggest an approach
for encoding the features obtained by the Decaf convolutional network into a
lower dimensional binary representation. Experiments lead us to conclude that
deep features as well as their encoded version can distinguish styles better than
hand-crafted low level descriptors.

When combining Decaf encoding with PiCoDes, a method of assembling low
level features in an optimized way, we receive state-of-the-art performance re-
sults. A closer inspection of the misclassified examples indicate that this fused
representation captures the subtle characteristics of styles and tends to mix up
closely related styles, a reasonable confusion for the non-expert human observer.

There is still considerable room for improvement. One future direction is us-
ing a hierarchical style-based classification. A different direction is incorporating
other deep neural network features known for good classification and detection
results (e.g. OverFeat[13]). Examining the classification performance of our de-
scriptor on other classification tasks – either art related (genre classification) or
real life images, is also worth trying.
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Fig. 2. The confusion matrix of our best features fusion representation: PiCoDes (1024-dim.), Pi-
CoDes (2048-dim.), encoded Decaf5 (405-dim.) and encoded Decaf6 (405-dim.). Columns are color
scaled from a minimum value of 0 (yellow) to a per-style maximum value (green). The main di-
agonal cells of the matrix, representing correct style classification is marked in green colors while
off-diagonal cells, representing misclassification are marked in yellowish-light green colors. As de-
scribed in Section 5, most of the off-diagonal cells that are marked in light-green colors represent
misclassification between correlated styles

Fig. 3. The confusion matrix of our best features fusion representation: PiCoDes (1024-dim.),
PiCoDes (2048-dim.), encoded Decaf5 (405-dim.) and encoded Decaf6 (405-dim.), rearranged by
related styles. Each red box indicates the confusion within a family of styles
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