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Abstract

Intentional voice modifications by electronic or non-
electronic means challenge automatic speaker recognition
systems. Previous work focused on detecting the act of
disguise or identifying everyday speakers disguising their
voices. Here, we propose a benchmark for the study of
voice disguise, by studying the voice variability of profes-
sional voice actors. A dataset of 114 actors playing 647
characters is created. It contains 19 hours of captured
speech, divided into 29,733 utterances tagged by charac-
ter and actor names, which is then further sampled. Text-
independent speaker identification of the actors based on
a novel benchmark training on a subset of the characters
they play, while testing on new unseen characters, shows
an EER of 17.1%, HTER of 15.9%, and rank-1 recognition
rate of 63.5% per utterance when training a Convolutional
Neural Network on spectrograms generated from the utter-
ances . An I-Vector based system was trained and tested on
the same data, resulting in 39.7% EER, 39.4% HTER, and
rank-1 recognition rate of 13.6%.

1. Introduction

Identifying the voice of a person who deliberately
modifies his natural voice is a common forensic need.
Criminals often disguise their voice electronically or non-
electronically by means of whispering, modifying their nat-
ural pitch, pinching their nostrils, or placing a barrier be-
tween their mouth and the telephone or the recording de-
vice. To counter such modifications, one may try to identify
the type of modification and then adapt the voice recogni-
tion method.

In this work, we study speaker identification of profes-
sional voice actors playing a variety of characters. The main
question we pose is whether it is possible to identify the ac-
tor playing a character by employing voice samples of the
actor playing different, deliberately distinguishable, char-
acters. As we show, this is indeed possible, at least at a
moderate level of accuracy.
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The voice recognition engine we use is based on a deep
Convolutional Neural Network (CNN) applied to the raw
spectrograms. While spectrograms have fallen out of fa-
vor in speaker recognition, and were replaced by methods
such as Mel-frequency cepstral coefficients (MFCCs) [25],
the ability to create convolutions that sample raw informa-
tion across both frequency and time makes them suitable
for CNN analysis. We focus on wide networks, with many
filters per layer, in order to capture minute differences be-
tween speakers.

In section 2 we present our data collection methods, in
section 3 we present the Deep Learning and I-Vector ex-
traction frameworks we used in the experiments, Section 4
describes the CNN and I-Vector experiments, followed by a
summary in section 5.

1.1. Previous work

Voice disguise is related to the problem of voice im-
itation (mimicry) based spoofing. While spoofing aims
to elicit false acceptances in authentication applications,
voice disguise and other forms of voice modification pro-
voke missed detections. Overall, it seems that imitation
by electronic means is a vulnerability of speaker verifi-
cation systems [5]. However such attacks can be de-
tected [16, 3]. Human imitation, even done by professional
imitators, increases the false acceptance rate by a very mod-
erate amount [11].

Intentional voice disguise was studied in [17], where vol-
unteering subjects altered their voices mainly by means of
whispering, murmuring, changing their pitch, or mimicking
accents. The baseline system employed a Gaussian mix-
ture model (GMM) on top of MFCC. While with the nor-
mal to normal conditions, it had a false rejection rate of 0%,
this increased to 39% when users were allowed to mod-
ify their voices. However, by simply changing the accep-
tance threshold to match disguised voices, the rejection rate
dropped to 9%. Amateur voice modifications, such as those
described above, can be detected with at least a moderate
level of success [24]. When the modifications are detected,
it is not clear how the models would be adapted in order to
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identify the speakers.

In a recent large scale study [4], the researchers applied
high-technology voice conversion methods [21] in order to
electronically obscure a person’s voice. The equal error
rates (EER) of a standard GMM model with a universal
background model increased from 9% to 34%, while an i-
vector based PLDA system [10, 18] increased from 3% to
10%.

Deep Neural Network (DNN) on top of speech co-
efficients such as MFCC or perceptual linear prediction
(PLP) [13] currently dominates the performance charts for
speech recognition, although recently a comparable level
of performance was achieved by employing kernel meth-
ods [14]. There have been attempts to match the perfor-
mance of the DNN networks using CNNs on top of spec-
trograms [2, 9, 26], which results in networks similar to our
network.

The usage of deep networks in speaker recognition is
much less studied, despite earlier interest [23, 7, 32, 12],
and the field is currently dominated by I-Vectors and
PLDA [10, 18]. Recently, CNNs have been explored as a
supplement or possible replacement to the Ivectors/PLDA
algorithm. a DNN on top of a 1,600-dimensional vector,
constructed by stacking 40-dimensional log filterbank en-
ergy features extracted for a block of 40 frames, was used
for text-dependent speaker verification [31]. The obtained
results were inferior to that of I-Vectors. Also a CNN has
been used together with Ivectors to obtain improved results
in speaker recognition in [22], but we take a more direct
approach using only the CNN to predict speakers. Other at-
tempts employed Boltzmann Machines [28, 27], obtaining
preliminary success.

2. Data collection

Our experiments require a large scale dataset of dis-
guised voices. As far as we know, we present the first such
dataset. In this section we describe the process of collecting
speech utterances from animated sitcoms, which is summa-
rized in Figure 1.

Animated TV shows are dubbed in recording studios
with high quality microphones, and each voice actor typi-
cally dubs multiple characters. For example, in episode 3
of season 13 Dan Castellaneta plays the characters Homer
Simpson, Chinese Officer, Chinese General, Barney Gum-
ble, Professor, and Man #2. We chose to extract speech
from The Simpsons and Futurama TV shows because the
actors voices on these shows use their natural voices, in con-
trast to shows such as South Park where the characters are
pitch-shifted [29].

In order to segment the speech audio subtitle time-
codes are used. To label and transcribe the utter-
ances, episode transcripts are used. For each episode
subtitles are obtained from opensubtitiles.org (www.

opensubtitles.org/), transcripts from The Simpsons
Archive (simpsonsarchive.com/) and The Internet
Movie Script Database (imsdb.com/).

To simplify our assumptions on the channel variance in
the data, and to present a more challenging task for our
system, we assume nothing regarding the handsets used to
record the audio. Furthermore, we decided to keep the ut-
terances in their native 48khz sample rate, to minimize in-
formation loss in generated spectrograms.

To label and transcribe the utterances, we match sub-
titles to transcript lines of a character, then use the char-
acter name to tag the utterance. Matching between subti-
tles and transcript quotes were done with Natural Language
Toolkit [8]. To overcome differences between subtitle and
transcript sentences when matching, we found that a cutoff
of 0.35 average Levenshtein distance per word was most
effective. Only subtitle and transcript sentences of length
greater than 4 words were considered for practical reasons.

Due to internal variance of character names in tran-
scribed episodes, character names are manually matched
to official character names from IMDB (http://www.
imdb.com/). We eliminated characters that have more
than one actor from our dataset, unless the character had a
significant number of appearances and was played mainly
by the same actor. In that case we separate the role in two.

Once the identifying and retrieving utterances is finished,
the utterances are filtered to eliminate white noise [30].
29,733 utterances were produced with this method, at a to-
tal length of 18.9 hours, with each utterance 2.29 seconds
long, on average.

An attempt to use utterance transcriptions for phonetic
alignment of speech using The Penn Phonetics Lab Forced
Aligner (p2fa) [33] was made. This proved problematic;
p2fa uses a phonetic dictionary to decide how text is pro-
nounced, and it was limited in scope and inflexible to the
accent richness and humorous pronunciations in the shows.

We finally generate spectrogram frames in a sliding win-
dow fashion per utterance, with window width 20ms and
step 10ms. All spectrograms are generated with SoX [1].
Each spectrogram shape is 513x107 pixels. Any spectro-
grams created in a different shape are not used.

3. Recognition method

We perform experiments with two speaker recognition
methods. A Convolutional Deep Neural Net applied as
a classifier to the spectrogram images, and an I-Vectors
method is implemented using the bob.spear framework [19,
6].

3.1. DNN architecture and training

We train a DNN, the renowned AlexNet [20], to classify
the speaker identified speaking within the spectrogram. The
overall architecture is shown in Figure 2. The input is an
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S0 naru 1ur e woncy
Oh, T something, something money,
Cone on give me lots of honey.

aaBr21 Homer's Food Song {ko}

Homer (spoken): Oh, I like food alright.
Homer (singing): fuil 55
I like hotdogs with mustard and beer.

; I like bagel:
Editor (spoken): I get the picture. _’
Homer: 1I'll eat eggplant. I could even eat a ba-a-by deer.

La- la- la- la- la- la- la- la la- la-
Who's that baby deer on the la-awn there?
Editor (spoken): Enough already!
Homer (spoken): Sorry.

Aage2 Ritalin Song {bjr}
Bart: ([singing to the tune of "Popeye, the Sailor Man"]

When I can't stop my fiddlin'
1 iust takes me Ritalin

{'Homer': ( 'Homer Simpson',
'Dan Castellaneta')}

"I LIKE PIZZA"

HOMER SIMPSON (CHARACTER)
DAN CASTELLANETA (ACTOR)

Figure 1. The data collection process. The audio we seek plays during an appearance of a subtitle. The subtitle is normalized, and located
within a transcript of the episode. The name appearing in the transcript is looked up in a pre-processed dictionary containing the official
IMDB names of actors and characters to identify the speaking actor and character. Finally, the time code from the subtitle is used to extract
the utterance we identified.
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Figure 2. Outline of the architecture we have used in this work. Input is a single spectrogram, followed by interleaving sets of convolu-
tion/maximization pooling hidden layers, two fully connected hidden layers with randomized weight disabling (DropOut), and finally a
softmax layer.

image of size 513 by 107- a spectrogram of a 20ms segment
of an utterance. This is denoted by 1@513x107, since they
are single channel images.

1-overlapping 3x3 spatial neighborhoods for each feature
separately.

A Local Response Normalization layer is applied. In this
layer, each input is divided by (1+ (o/n) Y, 2?)” where n
is the local region size, and the sum is taken over the region
centered at that value. In this case, the local regions extend
across nearby feature maps (they have no spatial extent).

The input is given to a convolutional layer (C1). The
filters are convolved across the image in a horizontal and
vertical stride of 4. Rectified Linear Unit activations are
applied to the convolution results in each step. This layer

encodes patterns across frequency and time dimension in
the spectrogram. The resulting feature maps, or features as
we will refer to them from now on, are then fed to a max-
pooling layer (M1) which takes the max pixel value over

We setn = 5, a = 0.0001, 8 = 0.75.

This is followed by another convolutional layer (C2).
This layer is grouped randomly into 2 groups, where each
output is connected only to inputs from its own group. In
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Figure 3. CNN training: the test error as a function of the training
epochs (1 epoch = 1 complete pass on Train set). We stopped
training at epoch 10 for practical reasons.

each step of the convolution, the filter is applied to and
summed across all given inputs. As before, ReLU/max-
pooling/LRN are applied in the same way.

3 Convolutional layers with ReLU non-linearity are ap-
plied, the dimensions described in the picture. C3 and C4
have no grouping, whereas C5 is with grouping like C2.
Atop C5 is another max-pooling layer (MS5) which con-
siders 3x3 spatial neighborhoods with 1 pixel overlap with
ReLU applied.

Next, is a fully-connected layer (FC6), whose input for
every unit is all the outputs from the previous layer. Each
unit proceeds to output Zi w;x; where w; represent the
weights given to each input z;. During image processing,
each weight is made zero or left the same in probability 0.5.
This is called a DropOut and the weights are re-selected
every image. All activations are multiplied by 2. The pro-
cess of FC/ReLU/DropOut is repeated with another fully-
connected layer (FC7). The output from FC7 is passed on
to a last fully-connected layer (FC8) with 13 outputs, which
is passed to a Softmax loss layer, which is the multinomial
logistic loss of the softmax of it’s inputs.

The weights are trained with with Stochastic Gradient
Descent and Back Propogation . The implementation is
done using the Caffe [15] Deep Learning library. In order
to allow complete reproducibility, we will publish the code
of the entire system.

3.2. I-Vectors implementation

We use the bob.spear I-Vector implementation for
speaker recognition tool chain. First, spear appliesan en-
ergy based VAD (in addition to our first VAD session) on
the voice data. MFCC feature extraction is done, then
UBM training. Next, subspace training I-Vector extraction

is done, followed by Whitening, length normalization, and
PLDA. Client models are enrolled by averaging utterance
features. Scores are computed. In this stage, the models are
compared to lists of probe features and a similarity score is
computed for each pair of model and probe features. Fi-
nally, evaluation is done. We use Half Total Error Rate
(HTER) score defined by W. We will be releas-
ing our configuration files of bob.spear for maximal repro-
ducibility.

4. Experiments

In order to perform our experiments, we select from
within our dataset all actors that play more than 5 charac-
ters. There are 13 such actors in total, and we use the rest
as auxiliary data, in ways that are discussed below. This
selection stems from the need to have sufficient character
diversity per actor in the train and test sets. Other voice ac-
tors, even those associated with many samples are not used
during the main experiment. For example, Katey Sagal, part
of Futurama’s main cast, plays only one character- Turanga
Leela, and is not included in the training set; Billy West,
another cast member, plays Philip J. Fry, Prof. Hubert J.
Farnsworth, Dr. Zoidberg and many more, and is included.

For each actor, we split their utterances by character into
Test and Train sets, i.e., a specific character appears only
in the train set or in the test set. 80% of the characters are
taken as Train, and 20% as test. As a secondary criterion,
we also make an attempt to have approximately 80% of the
utterances in the Train set. This is done by employing inte-
ger programming for the characters of each actor.

We did not run separate experiments for male and female
actors, because there exists some cross-gender acting in the
dataset. For example, the voice of Bart Simpson is actress
Nancy Cartwright. Experiment parameters and results are
summarized in the following subsections, and in Figure 4.

4.1. CNN Experiment

Using the Caffe framework, we train a Convolutional
Neural Net on the spectrograms we extracted in Data Col-
lection phase. We iterate over the Train set for half an
epoch, then evaluate our net on the Test set, and repeat. Fig-
ure 3 shows convergence of the test error.

Once the training is complete and all frames of Test set
are classified, an utterance is classified by selecting the ma-
jority class out of it’s frame classifications. The softmax
output of the CNN is taken as a score vector scoring each of
the possible classes. By marking the correct and incorrect
classifications over this vector, then over all Test set results,
the FAR, FRR, DET curve, EER and HTER of the CNN
system are calculated. On the per spectrogram classifica-
tion task, we achieved multi-class classification accuracy of
47.7% (52.3% error rate). After voting was employed, accu-
racy for utterances was 63.5% (36.5% error rate). The EER,

49



HTER of the system were 17.1%, 15.9%, respectively.

The above experiment details recognition results ob-
tained in a supervised manner on the set of 13 voice ac-
tors. In order to evaluate whether the CNN learned a general
representation, we also performed an unsupervised transfer-
learning experiment.

In this unsupervised experiment, each spectrogram was
represented by a vector of 4096 dimensions obtained as the
activation of the CNN in the layer before the classification
layer (FC7). The entire utterance was represented by the
mean activation of all the frames. This is perhaps the sim-
plest way to represent a set of vectors as a single vector. A
more sophisticated representation might lead to improved
results.

A benchmark based on the 101 actors with less than 5
characters in the datasets was constructed. It contains 2000
pairs of utterances of the same voice actor playing two dif-
ferent characters, and 6000 pairs of utterances by different
actors. Using the L2 distance of the two vectors of mean
FCT7 activations as a measure of dissimilarity between the
two utterances in each pair, we obtained an AUC of 68%
(EER 37%). A simple baseline which predicts simply by
the similarity in the gender of the actors in the pair of ut-
terances achieves a lower AUC of 58% (EER 44%), which
indicates that some non-trivial character-independent prop-
erties of the voice are encoded in the representation.

4.2. I-Vectors Experiment

We used bob.spear framework for extraction and evalua-
tion of I-Vectors from our data, with the points of the tool
chain specified in the previous section. In the experiment,
we use the other 101 actors (the ones who play less than 5
characters), 4584 utterances total, to train the UBM. As in
the CNN experiment, we use the same 80%/20% split by
character for development and evaluation, respectively.

For development, 4665 utterances from Train set are
used as probe features compared against speaker models.
For evaluation, all 4046 utterances in Test set are used as
probe features. 13,541 utterances from Train set are used
for ZT-Norm score normalization (9871 for T-Norm , 3670
for Z-Norm). The dimension of the UBM was selected to
be 8, and I-Vectors of dimension 50 were used. These pa-
rameters were chosen because of short utterance length.

The results of the experiment are 33% EER, 32.5%
HTER on the development set and 39.7% EER, 39.4%
HTER on the evaluation set. Out of the 13 trials done
with each probe, by taking the class with maximal score as
the prediction, multi-class classification accuracy was mea-
sured to be 13.6% (86.4% error rate).

5. Summary

Voice disguise is a common challenge for forensic voice
recognition systems. However, the existing experiments are
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Figure 4. DET curves for CNN and I-Vectors experiment.

limited in their scope, or limited to electronic disguise. In
this work, we extract from animated sitcoms a relatively
large dataset of disguised voices. We compare the I-Vector
method, which is currently the leading method in voice
recognition, to a novel deep neural network solution.

In our experiments, the CNN outperforms the I-Vector
based system in a significant margin. This could be due to
the fact that I-Vectors are usually beneficial on systems with
a larger number of speakers, or the relatively short length of
utterances (2.29 seconds on average). Further experimenta-
tion is required.

In the future, we seek to experiment with different CNN
architectures, I-Vector parameters, and continue promot-
ing the exploration of speaker variability introduced by the
characters of professional voice actors.
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