
נ כ ג1הת ת פ ש ה'ב ו ו א

1

Exercise No. 3
27.11.05-11.12.05

The main purpose of this assignment is to practice Design By Contract and unit testing. You will

implement and define the contract and invariant of a class representing a FIFO (first-in, first-out) queue of

a fixed capacity. Then, you will write a class for black-box tests.

The Queue Class:

The name of the class is FixedCapacityQueue<T>. It is a generic class that supports the following

commands and queries:

• public FixedCapacityQueue(int capacity) - Constructs a FIFO queue of a fixed

capacity as specified.

• public void enqueue(T t) - Inserts the given element t at the tail of the queue if the

queue is not full.

• public void dequeue() - Deletes the element at the head of the queue if the queue is not

empty.

• public T getHead() - Returns the element at the head of the queue if the queue is not

empty

• public boolean isEmpty() - Returns true if the queue is empty. Otherwise, returns false.

• public boolean isFull() - Returns true if the queue is full. Otherwise, returns false.

Your implementation of the queue will be based on an array of length n, where n is the specified capacity

in the constructor. Note in order to construct a generic array of length n, you should use the following

syntax: (T[])new Object[n] (this syntax will be explained in class).

Implement the class efficiently using a cyclic implementation. The simplest approach is to hold two

accessory variables: start and length. Where start holds the index of the current top of the queue

in the array and length is the number of elements. When dequeuing, start grows by one and

length is reduced by one, modulo the capacity of the array.

Carefully define the contract in Javadoc comments using the @pre and @post and @inv tags for the

pre-condition, post-condition and representation invariant, respectively. Also, define the implementation

contract using the @imp-inv and @imp-post for non-exported clauses in the invariant and post-

condition, as explained in recitation 5.

Use Javadoc for generating documentation in HTML format with the API and contract of the class. Note

that for this purpose you will need to install the "taglets.jar" jar (available on the course's web-site)

according to the instructions given in recitation 5.

The Unit Test Case Class:

Implement a class named TestFixedCapacityQueue that will act as a unit test case with black-box

tests for the FixedCapacityQueue class. Design at least three test cases (scenarios) in which

FixedCapacityQueue is used. Define three methods in TestFixedCapacityQueue, named test1,

נ כ ג1הת ת פ ש ה'ב ו ו א

2

test2, test3 that will conduct the test cases. Create a main method to call these methods. The test

cases should not be trivial and should demonstrate testing corner cases. Note also that your black-box

test cases should be general and pass any implementation that satisfies the specification of the

FixedCapacityQueue class and not only your implementation. In the context of the exercise, this

means that the exercise-checker may check your test class by running it on different implementations

including buggy implementations to see whether it reports errors/failures.

Use Javadoc for generating documentation in HTML format with the API of the class (contract

description is not required).

What to hand in?

1. Softcopy: A jar file named ex3.jar, with the FixedCapacityQueue class, its unit test class

TestFixedCapacityQueue, and the HTML Javadoc documentation, should be placed under

your ~/software1 directory as explained in the submission guidelines.

2. Hardcopy: Printouts of the FixedCapacityQueue.java,

TestFixedCapacityQueue.java files and the Javadoc HTML files for these classes.

