
 

Exercise: Searching Game Trees 
In this exercise you will implement one method and prove the correctness of several 
others. 

The program that the exercise focuses on 
plays a simple game called Connect Four. The 
following description of the game is from 
Wikipedia 
(http://en.wikipedia.org/wiki/Connect_Four). 
The game is played on a board with 7 
columns and 6 rows, which is placed in a 
vertical position. The players have 21 discs 
each, distinguished by color (say black and 
white; White plays first). The players take 
turns in dropping discs in one of the non-full 
columns. The disc then occupies the lowest unoccupied square on that column. A 
player wins by placing four of their own discs consecutively in a line (row, column 
or diagonal), which ends the game. The game ends in a draw if the board is filled 
completely without any player winning. 

The game itself is represented by two classes, ConnectFourBoard and 
ConnectFourMove. The second class represents a move in the game. In this game, a 
move is characterized by the column into which the disc is dropped, so this class is 
very simple: it represents an integer that we understand to be a column index. 

The first class, ConnectFourBoard, represents the state of the game. It provides 
several methods: 

• move is a query that returns a new game state (an object of the same class), the 
state that the current game would be in after a given move by one of the 
players. The move and the identity of the player are given as arguments to the 
method. 

• legalMoves returns all the legal moves in the state of the game represented by 
the current object.  

• isGameOver is a query that returns a value that indicates the state of the game. 
A score of zero means that the white won. A score of 1 means that the black 
won. A score of 1/2 means that the game ended in a draw (the game ended 
with no winner). A score of −1 means that the game has not ended yet. 

• score is a query that returns a double value between 0 and 1 (exclusive!) that 
indicates how bad the current game state is to the white player. Values near 0 
should indicate that the White's position is better than the Black's, and values 
near 1 the opposite. Scores should be monotonic: the worse the situation for 
White, the higher the score should be. Informally, think about them as an 
estimate for the probability that White will win. 

To allow the computer to play against a human, the program includes two other 
classes. They both perform the same function, but one is less efficient but easier to 



 

understand. Given a board situation, object from these classes search the space of 
possible continuations of the game to find the optimal move for the player whose 
turn it is. Since searching the space of possibilities until the game ends can be too 
expensive, these objects treat game situations that are depth moves away (for a 
given parameter depth) as terminations of the game. If the search algorithm 
reaches a game situation that is depth moves away, it computes the score of the 
situation, and uses that as a measure of who well each player does. The objective 
of the search algorithm is to find a move that minimizes the score that White can 
achieve if it's her turn and maximize the score that Black can achieve if it's her turn. 
The algorithm assumes that both players play optimally. For example, if a white 
move can lead to a white win if Black makes a mistake but to a white loss if Black 
plays well, this is considered a losing move for white; White assumes that Black 
makes no mistakes. 

Under this rules, we can view the game as a tree, in which nodes represent game 
positions and edges represent possible moves. The root is the empty board, the 
initial state of the game. The edges from the root to its children represent all the 
possible White moves (7 in this game, unless some of the columns are full). Edges 
from children of the root to their children represent Black moves, and so on. Leaves 
of the tree are game-end positions. Our search algorithm only considers sub-trees 
rooted at the current board and extending depth moves down. We can label such a 
sub-tree with scores as follows 

• Leaves of the subtree are labeled with their score, as computed by 
ConnectFourBoard.score(), or by 1 and 0 if the leaf represents a game-end 
situation. 

• The score of non-leaves in which it is White's turn to play is the minimum over 
the score of the node's children; White plays to minimize the score. This is called 
the min-rule. 

• The score of non-leaves in which it is Black's turn to play is the maximum over 
the score of the children. This is the max-rule. 

Such trees are called mini-max trees or game-search trees. The program plays by 
computing the scores of the children of the current game situation and selecting 
the move to the min child if the program plays the White (or the move to the max 
child if the program plays black). 

The simpler game-searching class, ExhaustiveGameSearch, finds the optimal move 
by recursively expanding the sub-tree it needs to search and using the min-max 
rules directly. The other class, AlphaBetaGameSearch, uses a cleverer algorithm. 

Complete the following tasks: 

1. Implement ConnectFourBoard.isGameOver() so that it satisfies its contract. You 
can add fields to the class if you need to. 

2. Implement ConnectFourBoard.score() so that it satisfies its contract. You can 
start with a very simple implementation that always returns 0.5 or a random 
value. This will allow you to test the program (and in particular, to test your 
solution for the previous part of the exercise). But eventually, your 
implementation must return a range of values that reflects at least how close 



 

each player is to connecting four disks. You can implement a better score 
function (for example, a method that also counts how many opportunities to 
connect four each player has, etc.), but it will not contribute to your grade (but 
it can be fun, especially if the program beats you at the game). It is not hard to 
write a score method that will make the program a strong player that is hard to 
beat. 

3. Prove that ConnectFourBoard.move() is correct (satisfies its contract). 

4. Prove that ExhaustiveGameSearch.optimalMove is correct. You will need to 
analyze its helper method, of course. 

5. Prove that AlphaBetaGameSearch.optimalMove is correct. This is hard. We will 
give this part of the program only 1/10 of the grade. 

Write proofs in comments directly above the methods whose correctness you 
prove. Do not attach extra files or hand-written proofs on paper. 

There are many possible improvements to this program, and trying some of them is 
fun. For example, you can try to modify the search algorithm so that the program 
plays the shortest path to winning once it finds a winning strategy. Ordering the 
children of a node by score can improve the search efficiency of 
AlphaBetaGameSearch, which will allow you to search deeper without spending 
much more time. 


