
Exercise No. 2
Due Date: 03.08.2006, 17:00

Part 1:

The purpose of this part of the exercise is to practice using objects.

On the course web-site you will find a jar1 file with a set of classes representing a simple
model of a company. There are two classes: Department and Worker. They each have a set
of attributes that describe them and methods that maintain the relationship between them.

The Acme company is founded with the following initial structure:

1. Implement the method found() in the class AcmeCompany. The method should create

a Department object that represents the entire company, as shown in the diagram
above. This method should construct many objects and connect them as appropriate.

2. Implement a method findWorker(String name) that returns a worker given his/her
name, and a method findDepartment(String name) that returns a department given its
name. These two should use recursion.

3. Implement a method moveUgi() that moves the worker Ugi from Expenses to Income.

1 An explanation about jar files can be found in the Eclipse handouts on the course web-site.

Finance HR

ACME

R&D

Paint Glue CoyotesRoad Income Expenses

Kipi

Ugi

Ufnik

Kermit

Miss
Piggy

Bip
Bip

Willy Rega

Dodli

Micky

Donald

Pluto

4. Implement a method fireKermit() that removes Kermit from the company.
5. Implement a method reorganize() that closes the Glue department, fires Miki and

Donald, and moves Pluto to the Coyotes department.

Part 2:

The main purpose of this part of the assignment is to practice Design By Contract, both in
implementation and proof.

You will implement a class named DistjointSets that represents a set S of disjoint sets: S =
{S1,S2, ...,Sn}, where each Si is a set of nonnegative integers. The class will support the
following public methods:

// @pre x is not in any of the sets Si
// @post S = old(S) U {{x}}
public void makeSet(int x);

// @pre x in Si , y in Sj
// @return true iff i == j
public boolean equiv(int x, int y);

// @pre x in Si , y in Sj , i !=j
// @post S = old(S) - Si - Sj U {Sij} where Sij = Si U Sj
public void joinSets(int x, int y);

// @pre nothing
// @return true iff x is in some Si
public boolean inASet(int x);

One way to implement the class is by representing each set Si as a tree, where each node
(associated with a nonnegative integer x) points to his parent. In this way, the root of a tree
uniquely represents a set Si. An array named parent can be used to hold all these pointers.
Specifically, for each number x, the value of parent[x] is the number of the parent node in the
tree or -1 if the number x does not belong to any set Si. The root of a tree points to itself. The
length of the array should be bigger than any number x that currently in one of the sets Si.
Thus, there is a need to replace the current array with a bigger one when a new large number
is added.

Given an object of the DisjointSets class, its abstract state is a set of disjoint sets of
nonnegative integers, {S1,S2, ...,Sn}, where the abstraction function can be defined as
follows:

We define a function r(m,x) as follows:
r(1,x) = parent[x],
 for m>0 r(m+1,x)= r(m,parent[x]) if parent[x] ≠ -1, otherwise r(m,parent[x]) = -1

S(this) = {S1, S2, … Sn} such that
For all x, [for all i, 1 ≤ i ≤ n, x ∉ Si] iff [x ≥ parent.length or parent[x] = -1]
For all x,y 0 ≤ x,y < parent.length Exists i, 1 <=i <= n x,y ∈ Si
 iff there exist m1 and m2, such that r(m1,x) = r(m2,y)

For example, for an object of the DisjointSets class with parent =

the associated tress are:

and the abstract state is S = { {3, 7} {12, 5, 2} {8} }. Applying equiv(3,5) will return
false. If we apply joinSets(7,5) the parent array will be

where the associated trees are

12

3 5

2

8

7

12 3

5

2

8

7

-1 -1 -1 5 3 -1 12 -1 3 8 -1 -1 -1 12

0 1 2 3 4 5 6 7 8 9 10 11 12

-1 -1 5 12 -1 12 -1 3 8 -1 -1 -1 12

0 1 2 3 4 5 6 7 8 9 10 11 12

and the abstract state is S = { {3, 7, 12, 5, 2} {8} }. If we apply makeSet(4) the abstract
state will be S = { {3, 7, 12, 5, 2} {8} {4}}.

Your assignment is to:

• Implement the DisjointSets class efficiently using the parent array (a template can be
found on the course web site). Note that for your convenient you may need to define a
few private methods. For example,

// @return the root of the tree to which the node with
// number n belongs

 private int root(int n)

 // If needed, replace parent by an array large enough,

// with same content.
 private void adjustArraySize(int n) {
 if (n >= parent.length) {
 …..
 }

}

Also, the Arrays class in the jave.util package may be very helpful.
• Define the representation invariant of the class

Comments about the Submission:

1. Create a new java project, named ex2, with the default properties.
2. Under this project create a package, named

il.ac.tau.cs.<your user name>.ex2
3. Download the template files for the exercise (for both parts) from the course web-site

and import it into your package.
4. Implement the required classes. Note that you are allowed to add helper methods, but

do not change the signature (visibility, name etc.) of the methods specified above.
5. Add proper documentation (as comments) that describes the contract of the classes.
6. You should hand-in a printout of the source files and a ZIP containing the same files

as explained in the submission guidelines document on the course web-site.

http://www.cs.tau.ac.il/~amiramy/software1/assignment submission.pdf

