
Exercise 5:
Searching Game Trees (Part II)

Due Date: 24.08.06, 17:00

The purpose of this exercise is to refactor the classes used to create
the connect four game (exercise 4) so that they will make
implementation of any future similar game easy. The family of future
games that need to be supported is two-player, turn-based games
that can be played using search trees.

Specifically:

1. Refactor the classes so that a new two-player, turn-based game
involving search trees can be supported easily (i.e. reuses code).
Note that there is no need to support now all such games, just give
the framework to easily create new implementations.

a. Create a diagram of the classes‘ relations as the ones shown
in class (note that there is no need to be strict about the
format/symbols of the diagram)

b. Explain in a few bullets the changes you have made

2. Refactor the connect-four code so it fits the new framework

3. Create an implementation of Tic-Tac-Toe

The aim is to use as much modularity and code reuse, while maintaining
simplicity and a code structure that is easy to understand and maintain.
Remember that the design should support easily creating many game
implementations in the future, not just connect four and tic-tac-toe.

What to submit:

1. The class relationship diagram after refactoring (hardcopy)

2. Short explanation of the changes made (hardcopy)

3. Refactored code (.java files) of both games (connect four and tic-
tac-toe) as a .zip file and hard copy

	Exercise 5:
	Searching Game Trees (Part II)

