
 1

 1בקורס תוכנה # 3משימה

 :הוראות הגשה

 . אשר נמצא באתר הקןרסקובץ נוהלי הגשת התרגיליםקראו בעיון את .1

 הוראות שימוש .VirtualTAU(http://virtual.tau.ac.il) י המערכת"הגשת התרגיל תעשה ע .2
 http://virtual2002.tau.ac.il/upload/misc/main1.html-במערכת ניתן למצוא ב

עבור , לדוגמא. שנושא את שם המשתמשzipי יצירת קובץ "הגשת התרגיל תתבצע ע .3
 . zvainer.zip יקרא הקובץ zvainerהמשתמש

 : יכילzipקובץ ה

 .הזהות שלכם. ז. המכיל את שמכם ומספר תdetails.txtקובץ פרטים אישיים בשם .א

 . של התכניות שהתבקשתם לכתובjava.-קבצי ה .ב

 .Javaקובץ טקסט עם העתק של כל קבצי ה .ג

 :שאלות

בנוסף יש לממש מתודת . בכל אחת משלוש השאלות הראשונות הינכם נדרשים לממש מתודה מסוימת
main ומדפיסה (קוראת לה מספר פעמים עם ערכים שונים) המדגימה את השימוש במתודה שכתבתם

 .את הערך המוחזר מכל קריאה

1. Consider the leftmost and rightmost appearances of some value in an array. We'll say

that the "span" is the number of elements between those two, inclusive. A single

value has a span of 1.

For example: maxSpan({1, 2, 1, 1, 3}) → 4

 maxSpan({1, 4, 2, 1, 4, 1, 4}) → 6

 maxSpan({1, 4, 2, 1, 4, 4, 4}) → 6

Implement the method public static int maxSpan(int[] nums). The

method returns the maximal span found in a given array. (Efficiency is not a priority).

2. Implement the method public static int[] fix34(int[] nums). The

method accepts and integer array as its input and returns a new array containing a

permutation of the input array. The method fix34 rearranges the input array such

that every 3 is immediately followed by a 4 (e.g. if there is a 3 at position i, there will

be a 4 at position i+1). The method keeps the original positions of the 3s but may

move any other number.

Assumptions regarding the input:

 The array contains the same number of 3's and 4's

 Every 3 is succeeded by a number that is not 3 nor 4

 A 3 appears in the array before any 4

Examples: fix34({1, 3, 1, 4}) → {1, 3, 4, 1}

 fix34({3, 2, 2, 4}) → {3, 4, 2, 2}

../misc/hw_submission_instructions.pdf
../misc/hw_submission_instructions.pdf
http://virtual.tau.ac.il/
http://virtual.tau.ac.il/
http://virtual2002.tau.ac.il/upload/misc/main1.html
http://virtual2002.tau.ac.il/upload/misc/main1.html

 2

3. Implement the method public static String notReplace(String str),

which when given a string return a string where every appearance of the lowercase

word "is" has been replaced with "is not". The word "is" should not be immediately

preceded or followed by a letter -- so for example the "is" in "this" should not be

replaced. (Note: Character.isLetter(char) tests if a char is a letter.)

Examples: notReplace("is test") → "is not test"

 notReplace("is-is") → "is not-is not"

 notReplace("This is right") → "This is not right"

לפרויקט יש (zipאו) jarכאשר הנכם נדרשים להוסיף קובץ . jarבשאלות הבאות נעשה שימוש בקבצי
 Add Externalכ " ואחBuild Pathבחירה ב , י קליק ימני על הפרויקט" עEclipseלעשות זאת ב

Archives .יש לבחור את הקובץ אותו רוצים להוסיף לפרויקט.
 . מכיל את הקבצים הנדרשים בשאלות אלוhw3_resources.zipהקובץ , בנוסף

4. In this question you will write a program that draws a simple picture. You are not

required to learn anything about graphics, instead you will use a Turtle class supplied

by us that implements turtle graphics as described below.

Introduction - LOGO and Turtle Graphics

LOGO is a simple programming language that is often used to introduce

programming concepts as well as planar geometry concepts to children. A LOGO

environment consists of a window representing a plane and a turtle that lives in this

plane. The turtle has a tail that can be up or down. If the turtle is walking when its tail

is down, it leaves behind it a line. When it walks while its tail is up, no line is left

behind. The purpose of LOGO is to be able to draw/define various figures by giving

instructions to the turtle.

The turtle has a location and a direction. You can give the turtle instructions to

change its location and direction causing it to draw some figures along the way. For

example, the instruction 'forward 30' tells the turtle to advance 30 units forward in the

direction it is looking at. The instruction 'left 45' tells the turtle to turn 45 degrees

counter-clockwise (i.e., change its direction by 45 degrees).

Here is a representative list of instructions you can give the turtle of LOGO:

 forward x advance x units forwards

 backwards x move x units backwards

 left x turn x degrees counter-clockwise

 right x turn x degrees clockwise

 tail up lifts the turtle's tail

 tail down lowers the turtle's tail

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources.zip
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources.zip

 3

What You Should Implement

You are not expected to implement the emulation of LOGO by yourself. For this

purpose we give you a Java class Turtle. Recall that this class defines all the

behaviors of a LOGO turtle. Your program should only create a turtle object and give

it instructions by invoking methods on it. The table below lists the methods of a

Turtle object. You are encouraged to look at the API documentation of class Turtle.

 moveForward(x) advance x units forwards

 moveBackward(x) move x units backwards

 turnLeft(x) turn x degrees counter-clockwise

 turnRight(x) turn x degrees clockwise

 tailUp() lifts the turtle's tail

 tailDown() lowers the turtle's tail

Pentagon.java is an example of a program that uses class Turtle to draw a 'pentagon'

figure (Below is the skeleton of the program with some additional comments).

class Pentagon {

 public static void main(String[] args) {
 Turtle leonardo = new Turtle(); // Creates the turtle
 leonardo.tailDown(); // Start painting
 leonardo.moveForward(100); // Advances the turtle

 // forward by 100 units
 // ...
 }
 }

Recall that an Euler drawing is a drawing that can be done

without lifting the pencil from the paper. In other words it

is a figure that is drawn without going over any line twice.

This is an example of an Euler drawing with our turtle.

Write a class called TurtleDrawing that draws the above figure n times, where n is

provided by the user. After each figure is drawn the turtle rotates so that at the end it

will complete a full cycle. In order to receive input from the user you should use the

LineInput class (located in the simple_io.zip file). For example below is the output of

TurtleDrawing when it is called to draw 12 figures.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Turtle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Turtle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Pentagon.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/LineInput.html

 4

And this is how the output would look for 4 figures:

After finshing drawing, hide the turtle using the method hide().

Technical Details

In order to use our Turtle class and the LineInput class you should include both

logo_turtle.jar and simple_io.zip on your project as explained above.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/LineInput.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/logo_turtle.jar
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/simple_io.zip

 5

5. In this exercise, you will get the code of the class Circle. Notice that the instance

variables of class Circle include the radius, and two double values x0 and y0 which

represent the center coordinate of the circle. We wish to change the implementation

of class Circle so that instead of these two variables, we will have an instance of class

Point as a member instance variable representing the center (download Point.java).

Remember that changing the implementation details should not affect the API of the

class! This means that this change should not be noticed by outside users of class

Circle. In particular you are not allowed to modify any of the method signatures. In

practice you will surely need to change the implementation of some of the methods.

Use the Circle.java file given to you and modify it to implement your solution.

To test your modified Circle class, we supply you with a class CircleViewer which

you can use to display your circles. CircleTest.java is a simple program that uses

CircleViewer. This program creates two circles and a CircleViewer object, and adds

both circles to the viewer, using the method addCircle() of the viewer.

The CircleViewer "remembers" the circles it should display (by storing a reference to

it), and whenever the update() method is called on it, it uses the Circle interface to

retrieve the state of all the circles it should display (i.e., calls getCenter(),

getRadius()), and draws them appropriately. To use the CircleViewer class, download

shapes.zip and include it in your project as explained above.

Write your own simple program called SimpleCircleTest that tests your circle

implementation class. Remember to test all the methods in the class, and use the

CircleViewer class.

6. In this section you will implement a utility class for image processing. Your class will

be able to rotate, flip and modify gray scales of a displayed image.

Since reading an image file and displaying it is out of the scope of this course, we

supply you with a JAR file that loads images and triggers the image processing

methods.

What You Should Do

Implement the class ImageProcessing according to its API.

Each of the static methods in this class receives as an input a two dimensional array

of image data. To simplify things we define that only gray-scaled images are

supported in our program, thus the image data contains values between 0 and 255,

where 0 symbols the black, 255 symbols the white and anything in between symbols

a level of gray.

The graphical interface we supply invokes the ImageProcessing methods by

sending the image data as a two-dimensional int array, receiving the results of the

operation (your implementation) and displaying the produced image in the

'Processed' frame. Every cell in the array is actually the gray level of the pixel

(picture element) at its corresponding image position.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Circle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Point.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Point.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Circle.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/CircleViewer.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/CircleTest.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Circle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/shapes.zip
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/ImageProcessing.html

 6

Technical Details
 Download the image_processor.jar, and make sure to include it on your build path

as explained above.

 At any stage of your work you can test your methods by executing the graphical

interface we supplied.

You can do so by creating a main class that will contain the following main

method and placing it in the working directory:

public static void main(String[] args) {
 ImageProcessorUI processorUI = new

 ImageProcessorUI("Image Processor");
}

Executing the main will display the application's screen:

Note: DO NOT submit this main.

 Load an image by clicking the 'Load Image' button and select a gray-scaled

image you wish to view. You can find a zip file containing 2 images here that you

can play with.

For example, loading the 'lena.jpg', flipping it and inverting it will yield the image

below:

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/image_processor.jar
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/images.zip

 7

 The histogram method creates a histogram for the given image data. It returns a

 256 cells array that holds the histogram representation. Each cell index in the

 array is referred as the column height for a given gray level that corresponds to

 the array's index number itself. For example, if the value 30 is in cell 0, that

 means we have 30 pixels with the value of 0 (black) in the loaded image. More

 generally: Cell i holds the number of image pixels with a gray level of i.

 Pressing the 'Display Histogram' button will display the loaded image histogram:

 8

 The flipX method should perform a flip relative to the X axis - i.e. vertical flip,

and the flipY should perform a horizontal flip. The animation bellow might

clear the issue.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/anim.swf

