1 NN ONPIA #3 NNOWN

$NVIN MINND

LDMNPN NN XY TWUN DIDNIND NWIN O9DN XDIP DX PYAIXIP .1

vy MmN .(http://virtual .tau.ac.il) Virtual TAU noaynn »y nwyn 900 nwan .2
http://virtual2002.tau.ac.il/upload/misc/mainl.html-a X185 Y11 N5yHN2

MY, NONTY . WNRNWNT DY IR NYDY ZIP NDIP NN 7Y YSINN 5NN Nvan- .3
.Zvainer.zip x21pn X1p» Zvainer wnnwnn
99 Zip N X2Wp

.D2YY MM 3.1 19010 DOV NN Do details.txt owa o»wN DV NP N
MDY DNYPANIY NMIONN YV java-noxap .a

Java noxap 555w pnyn oy vOPL XP)

LMINY

NTINHD VRN W QONI .NH/NIDN NTIND YHNND DIWIT) DN NMVYRIN MIRVN YIDYN NNX Y53

NN (DMWY DY DY DAY 190N NP NNINP) DNANOY NTINN YINIWN NN DTN main
NP DN 1IMNN TN NN

1. Consider the leftmost and rightmost appearances of some value in an array. We'll say
that the "span" is the number of elements between those two, inclusive. A single
value has a span of 1.

For example: maxSpan({1,2,1,1,3}) >4
maxSpan({1,4,2,1,4,1,4}) > 6
maxSpan({1,4,2,1,4,4,4}) — 6

Implement the method public static int maxSpan(int[] nums). The
method returns the maximal span found in a given array. (Efficiency is not a priority).

2. Implement the method public static int[] fix34 (int[] nums). The
method accepts and integer array as its input and returns a new array containing a
permutation of the input array. The method f£ix34 rearranges the input array such
that every 3 is immediately followed by a 4 (e.g. if there is a 3 at position i, there will
be a 4 at position i+1). The method keeps the original positions of the 3s but may
move any other number.

Assumptions regarding the input:
= The array contains the same number of 3's and 4's
= Every 3 is succeeded by a number that is not 3 nor 4
= A 3appears in the array before any 4
Examples: fix34({1,3,1,4}) — {1, 3,4, 1}
fix34({3,2,2,4}) — {3, 4, 2,2}

../misc/hw_submission_instructions.pdf
../misc/hw_submission_instructions.pdf
http://virtual.tau.ac.il/
http://virtual.tau.ac.il/
http://virtual2002.tau.ac.il/upload/misc/main1.html
http://virtual2002.tau.ac.il/upload/misc/main1.html

3.

Implement the method public static String notReplace (String str),
which when given a string return a string where every appearance of the lowercase
word "is" has been replaced with "is not". The word "is" should not be immediately
preceded or followed by a letter -- so for example the "is" in "this" should not be
replaced. (Note: Character.isLetter(char) tests if a char is a letter.)
Examples: notReplace("is test") — "is not test"

notReplace("is-is") — "is not-is not"

notReplace("This is right") — "This is not right"

VY LPNIY (ZIP IN) Jar NP POIND DIVITI DIIN IWNI .jar I¥IPA WINIW NYYI MINIT MINWA

Add External >7nx) Build Path a2 77 na 09190 Sy %1 pop vy Eclipse 2 nxy mwyb
0PI POINY DN INKN YDIPN NN NS v Archives
AYN MONWA DIVWITIN DINAPN NN 99910 hw3_resources.zip Yaipn ,qomna

In this question you will write a program that draws a simple picture. You are not
required to learn anything about graphics, instead you will use a Turtle class supplied
by us that implements turtle graphics as described below.

Introduction - LOGO and Turtle Graphics

LOGO is a simple programming language that is often used to introduce
programming concepts as well as planar geometry concepts to children. A LOGO
environment consists of a window representing a plane and a turtle that lives in this
plane. The turtle has a tail that can be up or down. If the turtle is walking when its tail
is down, it leaves behind it a line. When it walks while its tail is up, no line is left
behind. The purpose of LOGO is to be able to draw/define various figures by giving
instructions to the turtle.

The turtle has a location and a direction. You can give the turtle instructions to
change its location and direction causing it to draw some figures along the way. For
example, the instruction ‘forward 30’ tells the turtle to advance 30 units forward in the
direction it is looking at. The instruction 'left 45' tells the turtle to turn 45 degrees
counter-clockwise (i.e., change its direction by 45 degrees).

Here is a representative list of instructions you can give the turtle of LOGO:

forward x advance x units forwards
backwards x move X units backwards

left x turn x degrees counter-clockwise
right x turn x degrees clockwise

tail up lifts the turtle’s tail

tail down lowers the turtle's tail

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources.zip
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources.zip

What You Should Implement

You are not expected to implement the emulation of LOGO by yourself. For this
purpose we give you a Java class Turtle. Recall that this class defines all the
behaviors of a LOGO turtle. Your program should only create a turtle object and give
it instructions by invoking methods on it. The table below lists the methods of a
Turtle object. You are encouraged to look at the API documentation of class Turtle.

moveForward (x) advance x units forwards
moveBackward (x) move X units backwards
turnLeft (x) turn x degrees counter-clockwise
turnRight (x) turn x degrees clockwise

tailUp () lifts the turtle's tail

tailDown () lowers the turtle's tail

Pentagon.java is an example of a program that uses class Turtle to draw a ‘pentagon’
figure (Below is the skeleton of the program with some additional comments).

class Pentagon {

public static void main (String[] args) {
Turtle leonardo = new Turtle(); // Creates the turtle
leonardo.tailDown () ; // Start painting
leonardo.moveForward (100) ; // Advances the turtle
// forward by 100 units
/] ...

}

Recall that an Euler drawing is a drawing that can be done
without lifting the pencil from the paper. In other words it
is a figure that is drawn without going over any line twice.
This is an example of an Euler drawing with our turtle.

Write a class called TurtleDrawing that draws the above figure n times, where n is
provided by the user. After each figure is drawn the turtle rotates so that at the end it
will complete a full cycle. In order to receive input from the user you should use the
Linelnput class (located in the simple_io.zip file). For example below is the output of
TurtleDrawing when it is called to draw 12 figures.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Turtle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Turtle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Pentagon.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/LineInput.html

And this is how the output would look for 4 figures:

N

N

After finshing drawing, hide the turtle using the method hide().

Technical Details

In order to use our Turtle class and the Linelnput class you should include both
logo_turtle.jar and simple_i0.zip on your project as explained above.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/LineInput.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/logo_turtle.jar
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/simple_io.zip

5.

In this exercise, you will get the code of the class Circle. Notice that the instance
variables of class Circle include the radius, and two double values x0 and y0 which
represent the center coordinate of the circle. We wish to change the implementation
of class Circle so that instead of these two variables, we will have an instance of class
Point as a member instance variable representing the center (download Point.java).

Remember that changing the implementation details should not affect the API of the
class! This means that this change should not be noticed by outside users of class
Circle. In particular you are not allowed to modify any of the method signatures. In
practice you will surely need to change the implementation of some of the methods.
Use the Circle.java file given to you and modify it to implement your solution.

To test your modified Circle class, we supply you with a class CircleViewer which
you can use to display your circles. CircleTest.java is a simple program that uses
CircleViewer. This program creates two circles and a CircleViewer object, and adds
both circles to the viewer, using the method addCircle() of the viewer.

The CircleViewer "remembers" the circles it should display (by storing a reference to
it), and whenever the update() method is called on it, it uses the Circle interface to
retrieve the state of all the circles it should display (i.e., calls getCenter(),
getRadius()), and draws them appropriately. To use the CircleViewer class, download
shapes.zip and include it in your project as explained above.

Write your own simple program called SimpleCircleTest that tests your circle
implementation class. Remember to test all the methods in the class, and use the
CircleViewer class.

In this section you will implement a utility class for image processing. Your class will
be able to rotate, flip and modify gray scales of a displayed image.

Since reading an image file and displaying it is out of the scope of this course, we
supply you with a JAR file that loads images and triggers the image processing
methods.

What You Should Do

Implement the class ImageProcessing according to its API.

Each of the static methods in this class receives as an input a two dimensional array
of image data. To simplify things we define that only gray-scaled images are
supported in our program, thus the image data contains values between 0 and 255,
where 0 symbols the black, 255 symbols the white and anything in between symbols
a level of gray.

The graphical interface we supply invokes the ITmageProcessing methods by
sending the image data as a two-dimensional int array, receiving the results of the
operation (your implementation) and displaying the produced image in the
'Processed’ frame. Every cell in the array is actually the gray level of the pixel
(picture element) at its corresponding image position.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Circle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Point.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Point.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/Circle.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/CircleViewer.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/src/CircleTest.java
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/Circle.html
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/shapes.zip
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/API/ImageProcessing.html

Technical Details

Download the image_processor.jar, and make sure to include it on your build path
as explained above.

At any stage of your work you can test your methods by executing the graphical
interface we supplied.

You can do so by creating a main class that will contain the following main
method and placing it in the working directory:

public static void main (String[] args) {
ImageProcessorUI processorUIl = new
ImageProcessorUI ("Image Processor");

}

Executing the main will display the application's screen:

£ Image Processor =)
Original Processed
Flip Vertically || Flip Horizontally || Rotateccw || Rotatecw || InvertColors
I Display Histogram | | Reset Images | | Load Image]
C {2}]
Black & White levels 128
0 64 128 192

Note: DO NOT submit this main.

Load an image by clicking the 'Load Image' button and select a gray-scaled
image you wish to view. You can find a zip file containing 2 images here that you
can play with.

For example, loading the 'lena.jpg’, flipping it and inverting it will yield the image
below:

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/image_processor.jar
http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/images.zip

£ Image Processor

E

-Original

Flip Vertically | | Flip Horizontally | | Rotate CCW | | Rotate CW | | Invert Colors
[Display Histogram | I ResetIimages | I Load Image |
Black & White levels et

e The histogram method creates a histogram for the given image data. It returns a
256 cells array that holds the histogram representation. Each cell index in the
array is referred as the column height for a given gray level that corresponds to
the array's index number itself. For example, if the value 30 is in cell 0, that
means we have 30 pixels with the value of 0 (black) in the loaded image. More
generally: Cell i holds the number of image pixels with a gray level of i.
Pressing the 'Display Histogram' button will display the loaded image histogram:

-Original ‘| Processed-

>
Histogram &
Flip Vertically || Flip Horizontally || Rotateccw || Rotatecw || invertcolors
| Display Histogram || Reset Images || Load Image |
Black & White level

0 64 128 192

e The £1ipXx method should perform a flip relative to the X axis - i.e. vertical flip,
and the £1ipY should perform a horizontal flip. The animation bellow might
clear the issue.

http://www.cs.tau.ac.il/courses/software1/0809a/hw/hw3_resources/anim.swf

