1 D)9 ONPA #7 NNOWN

P3N TONTPN OV INNN !N PIN

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some cows, E-I-E-I-O
With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some dogs, E-I-E-I-O
With a woof-woof here and a woof-woof there

Here a woof there a woof
Everywhere a woof-woof

With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Requirements:

In Old MacDonald's farm you can find: dogs, cows, pigs, chicks and horses. In this
exercise you will write an application that receives as input a list of animals in old
MacDonald's farm (with possible repetitions). The application prints:

1. The list of animals in old MacDonald's farm with their sounds. The order of the
animals in this list is exactly the order in the input list.
For example: for the input “cow pig chick chick cow" the output is

COW: mOO
pig: oink
chick: cluck
chick: cluck
COW: mOO

2. The status of old MacDonald's farm: a two column table where the first column
contains animal names (no repetitions!) in alphabetical order and the second column
contains the number of animals of this type in old MacDonald's farm.

For example: for the input "cow pig chick chick cow" the output is:

Animal Count
chick 2
cow 2
pig 1

3. The "old MacDonald’s had a farm'* song for the animals in the farm. For every
animal type the line "And on his farm he had some ..." appears exactly once, the song
then continues repeating previous types. The order of appearance of the animal types
in the song is the order of appearance in the input list.

For example: for the input "cow pig chick chick cow" the output is:

0Old MacbDonald had a farm, E-I-E-I-0

And on his farm he had some cows, E-I-E-I-0
With a moo-moo here and a moo-moo there
Here a moo there a moo

Everywhere a moo-moo

0ld MacDonald had a farm, E-I-E-I-0O

0ld MacDonald had a farm, E-I-E-I-0O

And on his farm he had some pigs, E-I-E-I-0O
With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo

Everywhere a moo-moo
0ld MacDonald had a farm, E-I-E-I-0O

O0ld MacDonald had a farm, E-I-E-I-0O

And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck

With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo

Everywhere a moo-moo

0Old MacDonald had a farm, E-I-E-I-0

Design:
A schematic description of the interfaces, classes and methods

<<Interface=>
IAnimal

/_’/{:? ®oetMame () String
Cog ¥getsoLnd() : String

Sclone () : TAnimal
&

Cowy
= Song
Horsa \\“ WprintSongifarm : Farm) : void|
AN Farm
Chick | ™ N,
®addarimal{animd : IAnimd) : void
NN Witerator! ; Iterator<IAnima >
. AN NN N SiteratorUnique) ; Iterator<IAnimal>
Fig SN N W Sprintstatus() void
o0 RN A
SRR |
S OO
NOEON\
RN
|
FarmBuilder

Stvuildrarminames : String[) : Farm

Resources:

A skeleton for the application was implemented for you and you can download the files
from the web site. Some of the classes have a complete implementation and should not be
altered. Others are missing some implementation details and it is up to you to add those.

You should not change the signature of the public methods, but you may add private
methods and fields as you see fit.

Your implementation should rely on the collection classes mentioned in class (Set, List,
Map, ...). Read the documentation for the various classes and choose the ones you need
for your implementation.

Fully implemented classes: The interface IAnimal and the classes implementing it (Pig,
Cow, Horse, Chick and Dog) all belong to package
il.ac.tau.swl.oldmac.animals

The class Main (not shown in the diagram) is the entry point to the application (i.e. its

main method should be used). Main and all the classes in il.ac.tau.swl.oldmac.animals
are implemented and should not be altered.

What you should implement:

Complete the implementation of the classes Farm, FarmBuilder and Song in the
package i1.ac.tau.swl.oldmac as described below.

FarmBuilder class:

Builds a Farm object out of a list of animals. Implements a single method:

e public static Farm buildFarm(String[] animalNames)

The method receives a list of animal types then returns a new Farm populated with those
animals.

Farm class:
Represents a farm. Implements the following methods:
e public void addAnimal (IAnimal animal)

Add a new animal to the farm.

e public Iterator<IAnimal> iterator()

Return an iterator over all animal in the farm. The order is the same as the order
the animals were inserted to the farm.

e public Iterator<IAnimal> iteratorUnique ()
Return an iterator over all animals in the farm without repetitions. The iterator
iterates the animals in the farm by the order of their addition to the farm. For

example, if the animals added to the farm were: cow, pig, chick, chick, cow (in
this order), then the order of iteration is cow, pig, chick.

e public void printStatus()
Prints the status of the farm as described in the second requirement
Song class:
e public static void printSong (Farm farm)

Prints the "Old MacDonald had a farm" song as described in the third
requirement.

You may add any methods and fields you deem necessary to those three classes. In your
implementation you should use classes (and interfaces) from the Java Collection
Framework.

You may assume that:

e The list of arguments to the application is not empty and that every argument is one
of the following: "cow", "chick™, "horse", "dog" or "pig".

e The method Iterator.remove() is never called for the two iterators of class Farm.

YNIN VWON :’2 PYN

DNT DM DINIY 1ANII 2D TIPNN DOPON DIV YIN YN WNND DIWITI DNN 13 PONa
LOMPN NN NTNND

YN DT .NWINN XIP> XN 0NN HTML %97 5w 03191811 990102 590> 125V vIv N YN

NN NIYY IN POINY 191N 13N OX .Main.java Y21pa nnowin NN XI8HND 19N .WNIN DI
972W LOPLN PINY P DN NYINNY HTML 97 NTINY INRD .DWHNYHN DNN DN DTN
qona .HTMLTokenizer nponna 05712y w0 925 DY 1P .72 0995 NT PN PN
OGN NIOP WHRNWNN DY IWPNNI NIIWNN NN DPYann Tipn nav Main npbnnn

YYD 03Dy HN

NV OPTIN DY NP .NWINND NTNNY DTN D2 WNNY DIDIN DI DY DPTIN NYY NN

.WordIndex nponnn N vnnd 0375y .NKnNoN N9 1Y DIVINN YSID 1N ININD 1D TWIND
22 19N DPTIND D0 NIDIN NIVINND ,0X2°01 DPTIN NN NINW N NPINN

public class WordIndex {
public WordIndex () {

}

/**

* Add the words originating in the specifies URL.

* words - collection of words to add

* strURL - the location of the page containing the words
*/

public void index (Collection<String> words, String strURL) {

}
/

* %

* Search for a given word in the index

* word - the word to search

* A list of pages containing the word. The pages are
* ordered according to the relative importance of the word
* within them.

*

/
public List<String> search(String word) {

}

index nmnnn e
DY HY GOIN NYAPN NTINKN .DODY DINNIN 132N DIVIN DY ININX N DTN
DININ 72D NN NN2D DY YN 1NN TN DY VITVINRN NIIND NN (MITN NONM)
DY NN DT 1PN NI HOY : DINAN DIWPN HY MNHYY NINTDY IWNRNVN DNAY
D91 NI .(MITN DY) 12 MYN 97ND2 D9 NN 9T DOY 97 992 DY 11N

D910 Hw lowercase noI) MNNYOS ¥ ONIN PNPRN T2 NNV 295 XN VIPA

search nmsmn e
Y9N NPMIN JN2 VITVYN MAIND DY NN NPPYI NINNY VIDND NP NYIAPN
VAN NINON T INY M) §T2 NI HY YONN HPWNRNY 990V T2 NIWIN NN PINDI
VI N M DIPN2
99012 POINK §T2 NYMIN DY DOYNNIN 1901 292 AVNI T2 NI DY O HPWNN NN
97 IMNA 591ON OOMN

119970
5wnd 091> HashMap npbnnim Map pwinn v9a Java Collections » mponna ywnnwin

25 yw .Collections.sort(...) M¥P»aN NI WYL LIIVYPRN MIND HY NPWYIN PN NN
NNIYY YT .NYNYA WPANNY 79 KXY I9INPIOPY 111 NXIN (STring) mManon S myavn v
v IR HpnY »15 .Comparator pwinn NX NWHRNKNN NPZNN 2IN5Y D0DY PPN NVIY NX

MXNINY 29 1OV (1252 x9N 1) Wordndex nponna noms npdnns 13 npunn 1and
NN VIDND NN MMON IRNYNN

TNN PN (NNITI PIDN M0 MYD) NPy PR HTML-n 911 mbapnnn oomnw 25 mow
ANV N N2 WNRNWND XON DDMIN DY YD

IR

0991 YAPT rjavar vivd NN NP Main 1 ¥2IP2 NYIN MAININ NOXWI N1IY
Jjava
http://www.java.com/en/
http://en.wikipedia.org/wiki/Java (programming language)
http://en.wikipedia.org/wiki/Java
http://www.gutenberg.org/files/27152/27152-h/27152-h.htm

S w NPV

YN MIRMD

LDMNMPN NN XYY AWUN DIDNINN NN DN NP AN YA NP .1
.(http://virtual2002.tau.ac.il/y VirtualTAU noynn >y nwyn 9900 nedn - .2

T2Y,NONTY .WNNYNI DY IR YNV ZIP N1IP NN 7Y YNIND 9INN nedn .3
.Zvainer.zip x2ypn XIp> zvainer wnnwnn
1992 ZIp N X2P

.D2YY MINTN 3.1 1900 DOV NN Do details.txt owa o»wN DV YP N
MDY DNYPANNY NMIdNN YV java-noxap A

Java no8ap 955w pnyn oy LOPL NP)

http://virtual2002.tau.ac.il/
http://virtual2002.tau.ac.il/

