1 N9
4 9901 DN

1919593 7NN

LDOMPN NN N8N GWUN DIDNINN NWIN OO NP INPYAINIP @
.(http://virtual2002.tau.ac.il/) 1252 Virtual TAU n noyna nwyn 5% Inn nwan - e
NP ZVainer wnnwnn M1y, NNNTY) WHRnwnn DY IR XYNN TN ZIPp XIp vino v e
999> Zip N 2P (Zvainer.zip N2pn

D25V MNTN .3.0 190m) DNV NN Donn details.txt owa o»wN ovId XIP N

AUNNY DNYPIANN DMN NPIDIND YV java nosap .2

java n¥ap 95 5w pnyn oy (doc WX Xt VHPY) LOPL NP)

MoRYY MwnNn oy answers owa (doc X txt VPNY) LOPL NP .7

VP99 (ZIP IN) Jar §2P 9>0INY OIYIT) 093N TYUNI .jar 8apa YINIYW NYYI MNAN MYNVA
Add 57nny Build Path an9vna , 09990 by s 99 sy Eclipse a2 nxt mwyd v
L0P99Y POINY DI IMN Y1PH NN INaY v External Archives

Turtle Graphics

In this question you will write a program that draws a simple picture. You are not
required to learn anything about graphics, instead you will use a Turtle class supplied by
us that implements turtle graphics as described below.

Introduction - LOGO and Turtle Graphics

LOGO is a simple programming language that is often used to introduce programming
concepts as well as planar geometry concepts to children. A LOGO environment consists
of a window representing a plane and a turtle that lives in this plane. The turtle has a tail
that can be up or down. If the turtle is walking while its tail is down, it leaves behind it a
line. When it walks while its tail is up, no line is left behind. The purpose of LOGO is to
be able to draw/define various figures by giving instructions to the turtle.

The turtle has a location and a direction. You can give the turtle instructions to change its
location and direction causing it to draw some figures along the way. For example, the
instruction 'forward 30' tells the turtle to advance 30 units forward in the direction it is
looking at. The instruction 'left 45 tells the turtle to turn 45 degrees counter-clockwise
(i.e., change its direction by 45 degrees).

Here is a representative list of instructions you can give the turtle of LOGO:

forward x advance x units forwards
backwards x move X units backwards

left x turn x degrees counter-clockwise
right x turn x degrees clockwise

tail up lifts the turtle's tail

tail down lowers the turtle's tail

What You Should Implement

You are not expected to implement the emulation of LOGO by yourself. For this purpose
we give you a Java class Turtle. Recall that this class defines all the behaviors of a LOGO
turtle. Your program should only create a turtle object and give it instructions by
invoking methods on it. The table below lists the methods of a Turtle object. You are
encouraged to look at the API documentation of class Turtle.

moveForward (x) advance x units forwards
moveBackward (x) move X units backwards
turnLeft (x) turn x degrees counter-clockwise
turnRight (x) turn x degrees clockwise

tailUp () lifts the turtle's tail

tailDown () lowers the turtle's tail

Pentagon.java is an example of a program that uses class Turtle to draw a ‘pentagon’
figure (Below is the skeleton of the program with some additional comments).

class Pentagon {

public static void main(String[] args) {

Turtle leonardo = new Turtle(); // Creates the turtle
leonardo.tailDown () ; // Start painting
leonardo.moveForward (100) ; // Advances the turtle

// forward by 100 units
/e

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/Turtle%20API/index.html
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/Turtle%20API/index.html
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/Pentagon.java

Recall that an Euler drawing is a drawing that can be done
without lifting the pencil from the paper. In other words it is a
figure that is drawn without going over any line twice. This is an
example of an Euler drawing with our turtle.

Write a class called TurtleDrawing that draws the above figure n times, where n is
provided by the user. After each figure is drawn the turtle rotates so that at the end it will
complete a full cycle. In order to receive input from the user you should use the
Linelnput class (located in the simpleio.jar file). For example below is the output of
TurtleDrawing when it is called to draw 12 figures.

And this is how the output would look for 4 figures:

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/SimpleIO%20API/il/ac/tau/cs/sw1/simpleio/LineInput.html

After finshing drawing, hide the turtle using the method hide().

Technical Details

In order to use our Turtle class and the Linelnput class you should include both
logo_turtle.jar and simpleio.jar on your project as explained above. Note that Turtle and
Linelnput are defined in the packages i1.ac.tau.cs.swl.turtle and

il.ac.tau.cs.swl.simpleio respectively. Make sure to import those classes.

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/SimpleIO%20API/il/ac/tau/cs/sw1/simpleio/LineInput.html
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/logo_turtle.jar
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/simpleio.jar

Image Processing

In this section you will implement utilities for image processing. Your functions will be
able to rotate, flip and modify gray scales of a displayed image.

Since reading an image file and displaying it is out of the scope of this course, we supply
you with a JAR file that loads images and triggers the image processing functions.

What You Should Do

You are given a skeleton for the class ImageProcessing. You should implement all
the defined methods in the class. The documentation for the class is given here.

Each of the static methods in this class receives as an input a two dimensional array of
image data. To simplify things we define that only grayscaled images are supported in
our program, thus the image data contains values between 0 and 255, where 0 symbols
the black, 255 symbols the white and anything in between symbols a level of gray.

The graphical interface we supply invokes the ImageProcessing methods by sending
the image data as a two-dimensional int array, receiving the results of the operation (your
implementation) and displaying the produced image in the 'Processed’ frame. Every cell
in the array is actually the gray level of the pixel (picture element) at its corresponding
image position.

Technical Details

e Download the image_processor.jar, and make sure to include it on your build path as
explained above.
At any stage of your work you can test your methods by executing the graphic
interface we supply simply by running the skeleton program. Execution of the main
method will display the application’s screen (see below).
Initially none of the functionality will work as clicking on the various buttons invokes
your methods. As your implementation progresses you should be able to see the result
of it, this will aid you in testing and debugging your implementation.

£ Image Processor EJ

Original Processed

Flip Vertically H Flip Hori H Rotate CCW H Rotate CW H Invert Colors

‘ Display Histogram H ResetImages H Load Image ‘

Black & White levels 128
0 64 128 192

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/ImageProcessing.java
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/ImageProcessing.html
http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/image_processor.jar

e To load an image click on the 'Load Image' button and select a gray-scaled image you
wish to view. You can find a zip file containing 2 images here that you can play with.
For example, loading the 'lena.jpg’, flipping it (along the Y axis) and inverting it will
yield the image:

£ Image Processor g £

Flip Verti || Fiip || Rotateccw || Rotatecw || invert colors

] Display Hi: H Reset || Load Image I
5
Black & White levels . —

e The histogram method creates a histogram for the given image data. It returns a 256
cells array that holds the histogram representation. Each cell index in the array is
referred as the column height for a given gray level that corresponds to the array's
index number itself. For example, if the value 30 is in cell 0, that means we have 30
pixels with the value of 0 (black) in the loaded image. More generally: Cell i holds
the number of image pixels with a gray level of i.

Pressing the 'Display Histogram' button will display the loaded image histogram:

!

| Fiip y || Fiip Hori || Rotateccw || Rotatecw || invertcolors

| DisplayHistogram || Resetimages || Loadimage |

64 128 192

Black & White levels

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/images.zip

The invert method changes the grayscale levels of the image so the 0 becomes
255, 1 becomes 254, 2 become 253 etc.

The toBW method transforms the grayscale image into a black and white one. A
pixel's value under a given threshold will become 0 otherwise it will become 255.
The £1ipX method should perform a flip relative to the X axis - i.e. vertical flip, and
the £1ipY should perform a horizontal flip. See animation for clarification.

http://www.cs.tau.ac.il/courses/software1/0910a/hw/resources/anim.swf

