1 N9
7 9901 YN

19993 H1NIN

. DPN INND NN YN DIDNINN NWIN IO NP DN PV IR @
.(http://virtual2002.tau.ac.il/) 1252 Virtual TAU n no9yna nwyn 5% Inn nwan - e
NIPY Zvainer wnnwnn a2y, NNNTY) wHunwnn DY IR XYNN TN ZIPp XIp vino v e
999> Zip N 2P (Zvainer.zip N2pn
D25V MM .3.0 1901 DoV NX Donn details.txt ovwa o»wN VI8 NP N
AUNNY DNYPANN DNMIX NMIDIND YV java 18P .2
java nxap Y5 5w pnyn oy LOPL NP)

23D TONTPN DY INNN !N PON

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some cows, E-I-E-I-O
With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Old MacDonald had a farm, E-I-E-I-O
And on his farm he had some dogs, E-I-E-I-O
With a woof-woof here and a woof-woof there

Here a woof there a woof
Everywhere a woof-woof

With a moo-moo here and a moo-moo there
Here a moo there a moo
Everywhere a moo-moo
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck
Everywhere a cluck-cluck
Old MacDonald had a farm, E-I-E-I-O

Requirements:

In Old MacDonald's farm you can find: dogs, cows, pigs, chicks and horses. In this
exercise you will write an application that receives as input a list of animals in old
MacDonald's farm (with possible repetitions). The application prints:

1. The list of animals in old MacDonald’s farm with their sounds. The order of the
animals in this list is exactly the order in the input list.
For example: for the input “cow pig chick chick cow" the output is

COW: mMOO
pig: oink
chick: cluck
chick: cluck
COW: mMOO

2. The status of old MacDonald's farm: a two column table where the first column
contains animal names (no repetitions!) in alphabetical order and the second column
contains the number of animals of this type in old MacDonald's farm.

For example: for the input "cow pig chick chick cow" the output is:

Animal Count
chick 2
cCow 2
pig 1

3. The "old MacDonald'’s had a farm'* song for the animals in the farm. Revise the
song to describe only the animals currently in the farm. For every animal type the
line "And on his farm he had some ..." appears exactly once, the song then continues
repeating previous types. The order of appearance of the animal types in the song is
the order of appearance in the input list.

For example: for the input "cow pig chick chick cow" the output is:

0ld MacDonald had a farm, E-I-E-I-O

And on his farm he had some cows, E-I-E-I-0
With a moo-moo here and a moo-moo there
Here a moo there a moo

Everywhere a moo-moo

0ld MacDonald had a farm, E-I-E-I-O

0Old MacDonald had a farm, E-I-E-I-0O

And on his farm he had some pigs, E-I-E-I-0O
With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo
Everywhere a moo-moo
0ld MacDonald had a farm, E-I-E-I-O

0Old MacbDonald had a farm, E-I-E-I-0

And on his farm he had some chicks, E-I-E-I-O
With a cluck-cluck here and a cluck-cluck there
Here a cluck there a cluck

Everywhere a cluck-cluck

With an oink-oink here and an oink-oink there
Here an oink there an oink

Everywhere an oink-oink

With a moo-moo here and a moo-moo there

Here a moo there a moo

Everywhere a moo-moo

0Old MacbDonald had a farm, E-I-E-I-0

Design:

A schematic description of the interfaces, classes and methods (details might differ
slightly from the code).

<=Interface==
TAnimal

—/__/\:7 ¥gethame() : String
¥getsound? : String

Bsle
®clone () : [ARimal
IR

Cow
= Song
Horse \\' ForintSong(farm : Farm) © void
\ Farm
Chick | ™. AN
Raddarimal(anima : TAnimad) : void
NN ‘i?:eratgripf F?QéTatordEﬁmé:»ml
- . \ \ \\ ‘iteraton,lniqueo : Iterator<IAnimal=
Fig SN N W Sprintstatus() @ veid
AN A
NN |
SN
NN
RN

FarrBLilder

¥uildrarminames : string[T) : Farm

Resources:

A skeleton for the application was implemented for you and you can download the files
from the web site. Some of the classes have a complete implementation and should not be
altered. Others are missing some implementation details and it is up to you to add those.

You should not change the signature of public methods, but you may add private methods
and fields as you see fit.

Your implementation should rely on classes from the collections framework (Set, List,
Map, ...). Read the documentation for the various classes and choose the ones you find
most suitable for the implementation.

Fully implemented classes: The interface Animal and the classes implementing it (Pig,
Cow, Horse, Chick and Dog) all belong to the package
il.ac.tau.swl.oldmac.animals.

The class Main (not shown in the diagram) is the entry point to the application (i.e. its

main method should be used). Main and all the classes in il.ac.tau.swl.oldmac.animals
are implemented and should not be altered.

What you should implement:

Complete the implementation of the classes Farm, FarmBuilder and Song in the
package il.ac.tau.swl.oldmac as described below.

FarmBuilder class:

Builds a Farm object out of a list of animals. Implements a single method:

e public static Farm buildFarm(String[] animalNames)

The method receives a list of animal types then returns a new Farm populated with those
animals.

Farm class:
Represents a farm. implements the following methods:
e public void addAnimal (Animal animal)

Adds a new animal to the farm.

e public Iterator<Animal> iterator()

Returns an iterator over all the animals in the farm. The order is the same as the
order in which the animals were inserted to the farm.

e public Iterator<Animal> iteratorUnique ()

Returns an iterator over all the animals in the farm without repetitions. The
iterator iterates over the animals in the farm by the order of their addition to the
farm. For example, if the animals added to the farm were: cow, pig, chick, chick,
cow (in this order), then the order of iteration is cow, pig, chick.

e public void printStatus/()
Prints the status of the farm as described in the second requirement.

Song class:

e public static void printSong(Farm farm)

Prints the "Old MacDonald had a farm™ song as described in the third
requirement.

You may add any methods and fields as you deem necessary to those three classes. In
your implementation you should use classes (and interfaces) from the Java Collection
Framework.

You may assume that:
e The list of arguments to the application is not empty and that every argument is one

of the following: "cow", "chick", "horse", "dog" or "pig".
e The method Iterator.remove() is never called for the two iterators of class Farm.

YNIN WON ;a2 PHN

DT OM DINAY 1ANII 12D TIPNN DOPON . VIV YIDN YN WHNY DXVWITI DNN N PoNa
JONPN INNA TN

PN 0T .NYINN RIP> XN OMX HTML a7 5w 039181 99012 Y907 DY LI NN YN

IN PDINY 199N 1IN DX .SearchEngine nponna nnywan NX XISNY 19910 .WRIND DWNIAP
.DOVNNYN DNN DN DTN NN NIYD

CDVTHA ©Y9IY N3 PON P9 9TaV LOPLN PONY P PN NYANY HTML 97 wrnnw anxY

7PN naw SearchEngine nponnn qona .HTMLTokenizer nponna 05912y wnmn 9315 Mt Tip
AN AN NP WHRNYNRN OY IWPNNI NN NN YN

MYYY DIYY DN

MY OPTIN OV NP . AYINND NTNNY DTN D2 IWNNY D01 DI DY DPTIN NN NN
ova NPONN VNN DODY . NNNDN NI NIY DIWIDN YNIY 9N ININD 1D TWIND

, D200 DPTIR NN NI 13 Nponn Wordindex pwinn nx nwnnnin MyWordindex
2 YIDNY DPTIND DD NIDIN NIVAND

package il.ac.tau.cs.swl.simplesearch;

import java.util.Collection;
import java.util.List;

public interface WordIndex ({

Add the words originating in the specified URL.

@param words

- collection of words to add to the index
@param strURL

- the location of the page containing the words

void index(Collection<String> words, String strURL);

/**
* Search for a given word in the index

@param word
- the word to search
@Qreturn A list of pages containing the word. The pages are
ordered according to the relative importance of
the word within them.

* %k F X % %

*/
List<String> search(String word) ;

NINVD MTNNN

index nnonn e
DY HY GOIN NYAPN NTINNDD . 0IOY DINNN NI DIVIN DY ININNK 1T NTINN
DMININ 720 NX NN DIDY YN 1NN TN DY VITVINRN NAIND NN (MITN NON)
DY NN DT DN NP HIY : DININ DIVPN DY DYDY NINRTHY IWNNWN DNV
D201 NNV L(MITN DY) 12 MM 571D DM NN 9T D39 ,9T Y51 DY NI

.00 Yw lowercase Noax MNYS ¥ DYIN O NPHRN 9T NYNNY 29D N1 VIPI

search nnmnn e
LIV DN 12 VITVIN MAIND DY NN NI NPINNI VIDND NI NYIAPN
WD NAINDN T INY M) T2 NDMI DY YONN DPYNNY Y20V 15 NIV NN 110
.DPYIA 9N M) DPNa
D991 9900 YPYN T2 NN DY DOYMNN 190N M T2 NN DY HHOMN Hpwnn
9T IMNL HHON

119917

919 o915 HashMap npdnnn Map pwinn vi9oa ,Java Collections » mponna ywnnwin

25 yow .Collections.sort(...) MXPNAN NITYA WX VITVIND MIND DY NPWIN P NN

NNIYY YT . NYRWA WpANNWY >0 K91 9P opY 119n XN (String) mManon Sv myavn ynrmv

MNHINY 25 v .Comparator pwinn NN NWNRNNN NPYNN 1IN0 DY 1NN NVOY NN
. TPNONN VIDNN NN NN IRNVIN

TNN PN (DT PID N0 MOND) NPy WR HTML-n 91 mbapnnn o39mn : navn
AN 1N WHNYND ROX DD DY NI D5 yNad

DIDLN YTN LPIIN NIX1HN MAIN NXPND N NPINN AT DIOY MIDNN NN PITAY O
N8 NS .onwmmv MyWordIndex nponnn Hw yam »iaa 19 nvaym SearchEngine
: NONTY .FUN MWD RIPY OPIIRD

public class Main {
public static void main(String[] args) {
SimpleSearchEngine searchEngine =
new SimpleSearchEngine (new MyWordIndex()) ;
searchEngine.run () ;

sMINNDINT

rjavar vinnn N9 (TYNNa IR, WRIN 12197) Main 1§23 Nyomn mamsn nmw Nay

: 099N LaAp
Jjava
http://www.java.com/en/
http://en.wikipedia.org/wiki/Java (programming language)
http://en.wikipedia.org/wiki/Java
http://www.gutenberg.org/files/27152/27152-h/27152-h.htm

: NYHHS MIYN

991N . ©ONN DOPOND WYINdH PODY DDV DAY AN 92D NIPNN PON HNINN YPoN NYa
190N NYD . AWNND DIOON NN DOWNNT DI I8P AN YNV MY DOPN TIPN NN XIMY

L099PN Y (File->import) X120 V9N NITYL VPN NX NIMD

2P NN IDDIN PN INRY (EXisting Projects into Workspace) 0»p vp»19 Y X123 19002
.DORNNN XIPN NN Select Archive File natya 900

