
 1

 1תוכנה
 3תרגיל מספר

 :כלליותהנחיות

 קראו בעיון את קובץ נוהלי הגשת התרגילים אשר נמצא באתר הקורס.

 הגשת התרגיל תעשה במערכת הVirtualTAU בלבד(http://virtual2002.tau.ac.il/) .

 יש להגיש קובץzip עבור המשתמש , לדוגמא) ומספר התרגיל יחיד הנושא את שם המשתמש
zvainer יקרא הקובץzvainer_hw3.zip) קובץ הzip קבצי האת יכיל-java של התוכניות אותם

 התבקשתם לממש

 :שאלות

בנוסף יש לממש . הינכם נדרשים לממש מתודה מסוימת ראשונותהשאלות השלוש בכל אחת מ
קוראת לה מספר פעמים עם ערכים שונים)המדגימה את השימוש במתודה שכתבתם mainמתודת

 .(ומדפיסה את הערך המוחזר מכל קריאה

Implement the methods described in the first 3 questions in a class called Func.

1. Implement the method public static int maxSpan(int[] nums).

The method returns the maximal span found in a given array. (Efficiency is not a

priority here).

Consider the leftmost and rightmost appearances of some value in an array. We'll say

that the "span" is the number of elements between those extremeties, inclusive. A

single appearance has a span of 1.

For example: maxSpan({1, 2, 1, 1, 3}) → 4 (the span of 1)

 maxSpan({1, 4, 2, 1, 4, 4, 4}) → 6 (the span of 4)

2. Implement the method public static int[] fix34(int[] nums).

The method accepts an integer array as its input and returns a new array which is a

permutation of the input array. The method fix34 rearranges the input array such

that every 3 is immediately followed by a 4 (e.g. if there is a 3 at position i, there will

be a 4 at position i+1). The method keeps the original positions of the 3s but may

move any other number, moving the minimal amount of numbers.

Assumptions regarding the input:

 The array contains the same number of 3's and 4's (for every 3 there is a 4)

 There are no two consecutive 3s in the array

 The matching 4 for a 3 at some position i is at position j where j > i (after)

 Examples: fix34({1, 3, 1, 4}) → {1, 3, 4, 1}

 fix34({3, 2, 2, 4}) → {3, 4, 2, 2}

3. Implement the method public static String notReplace(String str).

The method takes a String as its input and returns a String in which every occurrence

of the lowercase word "is" has been replaced with "is not". The word "is" should not

 2

be immediately preceded or followed by a letter -- so for example the "is" in "this"

should not be replaced. (Note: Character.isLetter(char) tests if a char is a letter.)

Examples: notReplace("is test") → "is not test"

 notReplace("is-is wise") → "is not-is not wise"

לפרויקט (zipאו) jarכאשר הנכם נדרשים להוסיף קובץ . jarבשאלות הבאות נעשה שימוש בקבצי
 Addכ "ואח Build Pathבחירה ב , י קליק ימני על הפרויקט"ע Eclipseיש לעשות זאת ב

External Archives .יש לבחור את הקובץ אותו רוצים להוסיף לפרויקט.
 .הקבצים הנדרשים בשאלות אלואת מכיל hw3_resources.zipהקובץ , בנוסף

4. In this question you will write a program that draws a simple picture. You are not

required to learn anything about graphics, instead you will use a Turtle class supplied

by us that implements turtle graphics as described below.

Introduction - LOGO and Turtle Graphics

LOGO is a simple programming language that is often used to introduce

programming concepts as well as planar geometry concepts to children. A LOGO

environment consists of a window representing a plane and a turtle that lives in this

plane. The turtle has a tail that can be up or down. If the turtle is walking while its tail

is down, it leaves behind it a line. When it walks while its tail is up, no line is left

behind. The purpose of LOGO is to be able to draw/define various figures by giving

instructions to the turtle.

The turtle has a location and a direction. You can give the turtle instructions to

change its location and direction causing it to draw some figures along the way. For

example, the instruction 'forward 30' tells the turtle to advance 30 units forward in the

direction it is looking at. The instruction 'left 45' tells the turtle to turn 45 degrees

counter-clockwise (i.e., change its direction by 45 degrees).

Here is a representative list of instructions you can give the turtle of LOGO:

 forward x advance x units forwards

 backwards x move x units backwards

 left x turn x degrees counter-clockwise

 right x turn x degrees clockwise

 tail up lifts the turtle's tail

 tail down lowers the turtle's tail

What You Should Implement

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/hw3_resources.zip

 3

You are not expected to implement the emulation of LOGO by yourself. For this

purpose we give you a Java class Turtle. Recall that this class defines all the

behaviors of a LOGO turtle. Your program should only create a turtle object and give

it instructions by invoking methods on it. The table below lists the methods of a

Turtle object. You are encouraged to look at the API documentation of class Turtle.

 moveForward(x) advance x units forwards

 moveBackward(x) move x units backwards

 turnLeft(x) turn x degrees counter-clockwise

 turnRight(x) turn x degrees clockwise

 tailUp() lifts the turtle's tail

 tailDown() lowers the turtle's tail

Pentagon.java is an example of a program that uses class Turtle to draw a 'pentagon'

figure (Below is the skeleton of the program with some additional comments).

class Pentagon {

 public static void main(String[] args) {
 Turtle leonardo = new Turtle(); // Creates the turtle
 leonardo.tailDown(); // Start painting
 leonardo.moveForward(100); // Advances the turtle

 // forward by 100 units
 // ...
 }
 }

Recall that an Euler drawing is a drawing that can be done

without lifting the pencil from the paper. In other words it

is a figure that is drawn without going over any line twice.

This is an example of an Euler drawing with our turtle.

Write a class named TurtleDrawing that draws the above figure n times, where n is

provided by the user (see below). After each figure is drawn the turtle rotates so that

at the end it will complete a full cycle. You may assume user input is correct.

In order to receive input from the user use the LineInput class (located in the

simpleio.jar file). For example, below is the output of TurtleDrawing when called

with n == 12.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Pentagon.java
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/SimpleIO%20API/il/ac/tau/cs/sw1/simpleio/LineInput.html

 4

And this is how the output would look for n== 4:

Once the program finished drawing, hide the turtle using the method hide().

Technical Details

In order to use the Turtle and LineInput classes you will need to include

logo_turtle.jar and simpleio.jar on your project as explained above.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html#hide%28%29
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/logo_turtle.jar
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/simpleio.jar

 5

5. In this section you will implement utilities for image processing. The methods you'll

implements will rotate, flip and modify gray scales of a displayed image.

Since reading an image file and displaying it is out of the scope of this course, we

supply you with a JAR file that loads images and triggers the image processing

methods.

What You Should Do

You are given a skeleton for the class ImageProcessing. You should implement

all the defined methods in the class (except main). The documentation for the class is

given here.

Each of the static methods in this class receives as an input a two dimensional array

of image data. To simplify things we define that only gray scaled images are

supported in our program, thus the image data contains values between 0 and 255,

and where 0 is black, 255 is white and anything in between is a gray level.

The graphical interface we supply invokes the ImageProcessing methods by

sending the image data as a two-dimensional int array, receiving the results of the

operation (your implementation) and displaying the produced image in the

'Processed' frame. Every cell in the array is actually the gray level of the pixel

(picture element) at its corresponding image position.

Technical Details

 Download the image_processor.jar, and make sure to include it on your build path

as described above.

You can test your implementation at any point by simply running the skeleton

program we provide. Running the program will display the application's graphic

interface (see below).

Initially clicking the buttons will have no effect as each button invokes one of

your methods (not implemented yet). As your implementation progresses you

should be able to see the result of it, this will aid you in testing and debugging

your implementation.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/ImageProcessing.java
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/ImageProcessing.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/image_processor.jar

 6

 To load an image click on the 'Load Image' button and select a gray-scaled image

you wish to view. You can find a zip file containing 2 images here that you can

use.

For example, loading the 'lena.jpg', flipping it (along the Y axis) and inverting it

will yield the following result:

 The histogram method creates a histogram for the given image data. It returns a

256 cells array that holds the histogram representation. Each cell index in the

array is referred as the column height for a given gray level that corresponds to

the array's index number itself. For example, if the value 30 is in cell 0, that

means we have 30 pixels with the value of 0 (black) in the loaded image. More

generally: Cell i holds the number of image pixels with a gray level of i.

Pressing the 'Display Histogram' button will display the loaded image histogram:

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/images.zip

 7

 The invert method changes the grayscale levels of the image so the 0 becomes

255, 1 becomes 254, 2 become 253 etc.

 The toBW method transforms the grayscale image into a black and white one. A

pixel's value under a given threshold will become 0 otherwise it will become 255.

 The flipX method should perform a flip relative to the X axis - i.e. vertical flip,

and the flipY should perform a horizontal flip. See animation for clarification.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/anim.swf

