1 NN
3990910 YNN

199592 ;NN

DNPN INKD R¥NI TWN DIDXIND NWIN YONNI NP IR DY IR @
.(http://virtual2002.tau.ac.il/) 7252 Virtual TAU 1 no9yna nwyn 5% nn nwan - e
YRNWNN MY ,RDITY) 5NN 19001 wHnwnn DY DR RYDN TN ZIPp YIP vinow e

DMN NPINN DV java-n d8ap NX D> Zip 1 X (zvainer_hw3.zip x2pn 8P zvainer

wnNno onvpann

:MYNY

UNNY Y G0N NNNDN NTINHD WNNY DIVITI DN MNHUNRIN MINYA WIDUN NNN Y53
DY 0299Y Oy DINYD 1901 NY NANTP) ONANIY ATHINNA YINIYH NX NNMTHN Main nNmm

LNNOP D91 NRNMN TIYN NN NOIOM

Implement the methods described in the first 3 questions in a class called Func.

1.

Implement the method public static int maxSpan(int[] nums).

The method returns the maximal span found in a given array. (Efficiency is not a

priority here).

Consider the leftmost and rightmost appearances of some value in an array. We'll say

that the "span” is the number of elements between those extremeties, inclusive. A

single appearance has a span of 1.

For example: maxSpan({1,2,1,1,3}) > 4 (the span of 1)
maxSpan({1,4,2,1,4,4,4}) — 6 (the span of 4)

Implement the method public static int[] fix34 (int[] nums).
The method accepts an integer array as its input and returns a new array which is a
permutation of the input array. The method £ix34 rearranges the input array such
that every 3 is immediately followed by a 4 (e.g. if there is a 3 at position i, there will
be a 4 at position i+1). The method keeps the original positions of the 3s but may
move any other number, moving the minimal amount of numbers.
Assumptions regarding the input:
The array contains the same number of 3's and 4's (for every 3 there is a 4)
There are no two consecutive 3s in the array
The matching 4 for a 3 at some position i is at position j where j > i (after)
Examples: fix34({1,3,1,4})— {1,3,4,1}

fix34({3, 2,2,4}) — {3,4,2,2}

Implement the method public static String notReplace (String str).
The method takes a String as its input and returns a String in which every occurrence
of the lowercase word "is" has been replaced with "is not". The word "is" should not

be immediately preceded or followed by a letter -- so for example the "is™ in "this"
should not be replaced. (Note: Character.isLetter(char) tests if a char is a letter.)
Examples: notReplace("is test") — "is not test"

notReplace("is-is wise") — "is not-is not wise"

VP999Y (ZIP IN) Jar Y2 9*01NY DIV D3N TYUNRI .jar '¥APa YW NUYI MNAN MYNVA
Add o7nxy Build Path a n99na ,0pn990 Yy smd »o9p sy Eclipse 2 nxy mwyy v

L0P995 920115 DI IMN NDPH NX MNaY v External Archives
JIN MYNYWA DIUATIN 08PN NN 9Yan hw3 resources.zip xaypHn ,9ona

4.

In this question you will write a program that draws a simple picture. You are not
required to learn anything about graphics, instead you will use a Turtle class supplied
by us that implements turtle graphics as described below.

Introduction - LOGO and Turtle Graphics

LOGO is a simple programming language that is often used to introduce
programming concepts as well as planar geometry concepts to children. A LOGO
environment consists of a window representing a plane and a turtle that lives in this
plane. The turtle has a tail that can be up or down. If the turtle is walking while its tail
is down, it leaves behind it a line. When it walks while its tail is up, no line is left
behind. The purpose of LOGO is to be able to draw/define various figures by giving
instructions to the turtle.

The turtle has a location and a direction. You can give the turtle instructions to
change its location and direction causing it to draw some figures along the way. For
example, the instruction ‘forward 30’ tells the turtle to advance 30 units forward in the
direction it is looking at. The instruction 'left 45" tells the turtle to turn 45 degrees
counter-clockwise (i.e., change its direction by 45 degrees).

Here is a representative list of instructions you can give the turtle of LOGO:

forward x advance x units forwards
backwards x move X units backwards

left x turn x degrees counter-clockwise
right x turn x degrees clockwise

tail up lifts the turtle’s tail

tail down lowers the turtle's tail

What You Should Implement

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/hw3_resources.zip

You are not expected to implement the emulation of LOGO by yourself. For this
purpose we give you a Java class Turtle. Recall that this class defines all the
behaviors of a LOGO turtle. Your program should only create a turtle object and give
it instructions by invoking methods on it. The table below lists the methods of a
Turtle object. You are encouraged to look at the API documentation of class Turtle.

moveForward (x) advance x units forwards
moveBackward (x) move X units backwards
turnLeft (x) turn x degrees counter-clockwise
turnRight (x) turn x degrees clockwise

tailUp () lifts the turtle's tail

tailDown () lowers the turtle's tail

Pentagon.java is an example of a program that uses class Turtle to draw a ‘pentagon’
figure (Below is the skeleton of the program with some additional comments).

class Pentagon {

public static void main(Stringl[] args) {
Turtle leonardo = new Turtle(); // Creates the turtle
leonardo.tailDown () ; // Start painting
leonardo.moveForward (100) ; // Advances the turtle

// forward by 100 units
/).

}

Recall that an Euler drawing is a drawing that can be done
without lifting the pencil from the paper. In other words it
is a figure that is drawn without going over any line twice.
This is an example of an Euler drawing with our turtle.

Write a class named TurtleDrawing that draws the above figure n times, where n is
provided by the user (see below). After each figure is drawn the turtle rotates so that
at the end it will complete a full cycle. You may assume user input is correct.

In order to receive input from the user use the Linelnput class (located in the
simpleio.jar file). For example, below is the output of TurtleDrawing when called
with n ==12.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Pentagon.java
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/SimpleIO%20API/il/ac/tau/cs/sw1/simpleio/LineInput.html

And this is how the output would look for n==4:

Once the program finished drawing, hide the turtle using the method hide().

Technical Details

In order to use the Turtle and Linelnput classes you will need to include
logo_turtle.jar and simpleio.jar on your project as explained above.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/Turtle%20API/il/ac/tau/cs/sw1/turtle/Turtle.html#hide%28%29
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/logo_turtle.jar
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/simpleio.jar

5.

In this section you will implement utilities for image processing. The methods you'll
implements will rotate, flip and modify gray scales of a displayed image.

Since reading an image file and displaying it is out of the scope of this course, we
supply you with a JAR file that loads images and triggers the image processing
methods.

What You Should Do

You are given a skeleton for the class ImageProcessing. You should implement
all the defined methods in the class (except main). The documentation for the class is
given here.

Each of the static methods in this class receives as an input a two dimensional array
of image data. To simplify things we define that only gray scaled images are
supported in our program, thus the image data contains values between 0 and 255,
and where 0 is black, 255 is white and anything in between is a gray level.

The graphical interface we supply invokes the ImageProcessing methods by
sending the image data as a two-dimensional int array, receiving the results of the
operation (your implementation) and displaying the produced image in the
'Processed' frame. Every cell in the array is actually the gray level of the pixel
(picture element) at its corresponding image position.

Technical Details

e Download the image_processor.jar, and make sure to include it on your build path
as described above.
You can test your implementation at any point by simply running the skeleton
program we provide. Running the program will display the application's graphic
interface (see below).
Initially clicking the buttons will have no effect as each button invokes one of
your methods (not implemented yet). As your implementation progresses you
should be able to see the result of it, this will aid you in testing and debugging
your implementation.

£ Image Processor EJ

Original Processe d

Flip Vertically || Fiip Horizontally || Rotateccw || Rotatecw || nvertcotors

‘ Display Histogram H ResetImages H Load Image ‘

Black & White levels

o 64 128 192

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/ImageProcessing.java
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/ImageProcessing.html
http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/image_processor.jar

e To load an image click on the 'Load Image' button and select a gray-scaled image
you wish to view. You can find a zip file containing 2 images here that you can
use.

For example, loading the 'lena.jpg’, flipping it (along the Y axis) and inverting it
will yield the following result:

£ Image Processor g =]

&

Flip Vertically || Flip Hori Il ASEE || Rotatecw || invertcotors

| pisplayHistogram || Reset || Loadimage |
5
Black & White levels e

e The histogram method creates a histogram for the given image data. It returns a
256 cells array that holds the histogram representation. Each cell index in the
array is referred as the column height for a given gray level that corresponds to
the array's index number itself. For example, if the value 30 is in cell 0, that
means we have 30 pixels with the value of 0 (black) in the loaded image. More
generally: Cell i holds the number of image pixels with a gray level of i.
Pressing the 'Display Histogram' button will display the loaded image histogram:

Original

!

Flip Vertically || Flip Hori || Rotateccw || Rotatecw || invertcolors
‘ Display Histogram H Reset Images H Load Image |
_
Btk & Wits lavels. e

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/images.zip

The invert method changes the grayscale levels of the image so the 0 becomes
255, 1 becomes 254, 2 become 253 etc.

The toBW method transforms the grayscale image into a black and white one. A
pixel's value under a given threshold will become 0 otherwise it will become 255.
The £1ipX method should perform a flip relative to the X axis - i.e. vertical flip,
and the £1ipY should perform a horizontal flip. See animation for clarification.

http://www.cs.tau.ac.il/courses/software1/1011b/hw/03/anim.swf

