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Kinds of Architectures

• SISD (Uniprocessor)
– Single instruction stream

– Single data stream 

• SIMD (Vector)
– Single instruction

– Multiple data

• MIMD (Multiprocessors)
– Multiple instruction

– Multiple data. 
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Kinds of Architectures

• SISD (Uniprocessor)
– Single instruction stream

– Single data stream 

• SIMD (Vector)
– Single instruction

– Multiple data

• MIMD (Multiprocessors)
– Multiple instruction

– Multiple data. 

Our space

(1)
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MIMD Architectures

• Memory Contention
• Communication Contention 
• Communication Latency

Shared Bus

memory

Distributed
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What Should you do if you can’t 
get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
[ask another thread to run
expensive since switching is pricey]
– Good if delays are long

– Always good on uniprocessor
(1)
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What Should you do if you can’t 
get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
– Good if delays are long

– Always good on uniprocessor

our focus



Art of Multiprocessor Programming 7

Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock introduces 
sequential bottleneck
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Notice: these are distinct 
phenomena

…lock suffers from 
contention
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...

…lock suffers from 
contention

Seq Bottleneck  no 
parallelism
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Basic Spin-Lock

CS

Resets lock 
upon exit

spin 
lock

critical 
section

...
Contention  ???

…lock suffers from 
contention
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Review: Test-and-Set

• Boolean value

• Test-and-set (TAS)
– Swap true with current value

– Return value tells if prior value was true
or false

• Can reset just by writing false

• TAS aka “getAndSet”
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Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

(5)
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Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean 
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

Package
java.util.concurrent.atomic
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Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

Swap old and new 
values
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Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)
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Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called 
“test-and-set” or TAS
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Test-and-Set Locks

• Locking
– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win

– If result is true, you lose 

• Release lock by writing false
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Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}} 



Art of Multiprocessor Programming 21

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}} 
Lock state is AtomicBoolean
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Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}} 
Keep trying until lock acquired
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Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}} 

Release lock by resetting 
state to false
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Space Complexity

• TAS spin-lock has small “footprint” 

• N thread spin-lock uses O(1) space

• As opposed to O(n) in solutions that 
keep record of who else is interested
(we’ll see later)
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Performance

• Experiment
– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?
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Graph

ideal

ti
m

e

threads

no speedup 
because of 
sequential 
bottleneck
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Mystery #1

ti
m

e

threads

TAS lock

Ideal

(1)

What is 
going 
on? 
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Test-and-Test-and-Set Locks

Main idea:

Split the following lock line to two
while (state.getAndSet(true)) {}
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Test-and-Test-and-Set Locks

• Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

• Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
– If TAS loses, back to lurking
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Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
} 
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Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
} Wait until lock looks free
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Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
} 

Then try to 
acquire it
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Mystery #2

TAS lock

TTAS lock

Idealti
m

e

threads
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Mystery

• Both
– TAS and TTAS

– Do the same thing (in our model)

• Except that
– TTAS performs much better than TAS

– Neither approaches ideal
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Opinion

• Our memory abstraction is broken

• TAS & TTAS methods
– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …
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Bus-Based Architectures

Bus

cache

memory

cachecache
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Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory 
(10s of cycles)
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Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•Broadcast medium
•One broadcaster at a time
•Processors and memory all 
“snoop”

Bus
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Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information
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Jargon Watch

• Cache hit
– “I found what I wanted in my cache”

– Good Thing™
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Jargon Watch

• Cache hit
– “I found what I wanted in my cache”

– Good Thing™

• Cache miss
– “I had to shlep all the way to memory 

for that data”

– Bad Thing™
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Cave Canem

• This model is still a simplification
– But not in any essential way

– Illustrates basic principles
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Bus

Processor Issues Load Request

cache

memory

cachecache

data
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Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

Gimme
data
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cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your 
data right 

here data
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Bus

Processor Issues Load Request

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Gimme
data
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

I got 
data
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Bus

Other Processor Responds

memory

cachecache

data

I got 
data

datadata

Bus
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Bus

Other Processor Responds

memory

cachecache

data

datadata

Bus
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Modify Cached Data

Bus

data

memory

cachedata

data

(1)
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Modify Cached Data

Bus

data

memory

cachedata

data

data

(1)
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memory

Bus

data

Modify Cached Data

cachedata

data
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memory

Bus

data

Modify Cached Data

cache

What’s up with the 
other copies?

data

data
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Cache Coherence

• We have lots of copies of data
– Original copy in memory 

– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?

– How to avoid confusion?
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Write-Back Caches

• Accumulate changes in cache

• Write back when needed
– Need the cache for something else

– Another processor wants it

• On first modification
– Invalidate other entries

– Requires non-trivial protocol … 
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Write-Back Caches

• Cache entry has three states
– Invalid: meaningless content

– Valid: I can read but I can’t write
(may be cached elsewhere)

– Dirty: Data has been modified
• Intercept other load requests

• Write back to memory before using cache
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Bus

Invalidate

memory

cachedatadata

data
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Bus

Invalidate

Bus

memory

cachedatadata

data

Mine, all 
mine!
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Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Uh,oh
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cache

Bus

Invalidate

memory

cachedata

data

Other caches lose read permission
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cache

Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission
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cache

Bus

Invalidate

memory

cachedata

data

Memory provides data only if not 
present in any cache, so no need to 

change it now (expensive)

(2)
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cache

Bus

Another Processor Asks for 
Data

memory

cachedata

data

(2)

Bus
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cache data

Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!



Art of Multiprocessor Programming 66

Bus

End of the Day …

memory

cachedata

data

(1)

Reading OK, no writing

data data
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Mutual Exclusion

• What do we want to optimize?
– Bus bandwidth used by spinning threads

– Release/Acquire latency

– Acquire latency for idle lock
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Simple TASLock 

• TAS invalidates cache lines

• Spinners
– Miss in cache

– Go to bus

• Thread wants to release lock
– delayed behind spinners
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Test-and-test-and-set

• Wait until lock “looks” free
– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …
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Local Spinning while Lock is 
Busy

Bus

memory

busybusybusy

busy
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Bus

On Release

memory

freeinvalidinvalid

free
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On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses, 
rereads

(1)
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On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)



Art of Multiprocessor Programming 74

Problems

• Everyone misses
– Reads satisfied sequentially

• Everyone does TAS
– Invalidates others’ caches

• Eventually quiesces after lock 
acquired
– How long does this take?  

Linearly with the number of processors
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Mystery Explained

TAS lock

TTAS lock

Idealti
m

e

threads

Better than 
TAS but still 
not as good as 

ideal
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Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again
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Dynamic Example: 
Exponential Backoff

time
d2d4d

spin lock

If I fail to get lock
– wait random duration before retry
– Each subsequent failure doubles 
expected wait
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}  
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}  Fix minimum delay
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}  Wait until lock looks free
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}  If we win, return
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}  

Back off for random duration
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Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}} 

Double max delay, within reason
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Spin-Waiting Overhead

TTAS Lock

Backoff lockti
m

e

threads
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Backoff: Other Issues

• Good
– Easy to implement

– Beats TTAS lock

• Bad
– Must choose parameters carefully

– Not portable across platforms
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Idea

• Avoid useless invalidations
– By keeping a queue of threads

• Each thread
– Notifies next in line

– Without bothering the others
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Anderson Queue Lock

flags

next

T F F F F F F F

idle



Art of Multiprocessor Programming 90

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired

Mine!
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement



Art of Multiprocessor Programming 96

acquired

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired



Art of Multiprocessor Programming 98

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Yow!
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Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];
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Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];

One flag per thread
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Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];

Next flag to use
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Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

ThreadLocal<Integer> mySlot;

Thread-local variable
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Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}  
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Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}  Take next slot
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Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}  Spin until told to go



Art of Multiprocessor Programming 106

Anderson Queue Lock

public lock() {

myslot = next.getAndIncrement();

while (!flags[myslot % n]) {};

flags[myslot % n] = false;
}

public unlock() {
flags[(myslot+1) % n] = true;
}  Prepare slot for re-use
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Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}

Tell next thread to go
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Performance

• Shorter handover than 
backoff

• Curve is practically flat
• Scalable performance
• FIFO fairness

queue

TTAS
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Anderson Queue Lock

• Good
– First truly scalable lock

– Simple, easy to implement

• Bad
– Space hog

– One bit per thread
• Unknown number of threads?

• Small number of actual contenders?
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One Lock To Rule Them All?

• TTAS+Backoff, CLH, MCS, ToLock…

• Each better than others in some way

• There is no one solution

• Lock we pick really depends on:
– the application

– the hardware

– which properties are important
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This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License. 

• You are free:

– to Share — to copy, distribute and transmit the work 

– to Remix — to adapt the work 

• Under the following conditions:

– Attribution. You must attribute the work to ―The Art of 

Multiprocessor Programming‖ (but not in any way that suggests that 

the authors endorse you or your use of the work). 

– Share Alike. If you alter, transform, or build upon this work, you 

may distribute the resulting work only under the same, similar or a 

compatible license. 

• For any reuse or distribution, you must make clear to others the license 

terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission from 

the copyright holder. 

• Nothing in this license impairs or restricts the author's moral rights. 
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