
Spin Locks and Contention

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Modified for Software1 students
by Lior Wolf and Mati Shomrat

Art of Multiprocessor Programming 2

Kinds of Architectures

• SISD (Uniprocessor)
– Single instruction stream

– Single data stream

• SIMD (Vector)
– Single instruction

– Multiple data

• MIMD (Multiprocessors)
– Multiple instruction

– Multiple data.

Art of Multiprocessor Programming 3

Kinds of Architectures

• SISD (Uniprocessor)
– Single instruction stream

– Single data stream

• SIMD (Vector)
– Single instruction

– Multiple data

• MIMD (Multiprocessors)
– Multiple instruction

– Multiple data.

Our space

(1)

Art of Multiprocessor Programming 4

MIMD Architectures

• Memory Contention
• Communication Contention
• Communication Latency

Shared Bus

memory

Distributed

Art of Multiprocessor Programming 5

What Should you do if you can’t
get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
[ask another thread to run
expensive since switching is pricey]
– Good if delays are long

– Always good on uniprocessor
(1)

Art of Multiprocessor Programming 6

What Should you do if you can’t
get a lock?

• Keep trying
– “spin” or “busy-wait”

– Good if delays are short

• Give up the processor
– Good if delays are long

– Always good on uniprocessor

our focus

Art of Multiprocessor Programming 7

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

Art of Multiprocessor Programming 8

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock introduces
sequential bottleneck

Art of Multiprocessor Programming 9

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Art of Multiprocessor Programming 10

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Notice: these are distinct
phenomena

…lock suffers from
contention

Art of Multiprocessor Programming 11

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from
contention

Seq Bottleneck no
parallelism

Art of Multiprocessor Programming 12

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Contention ???

…lock suffers from
contention

Art of Multiprocessor Programming 13

Review: Test-and-Set

• Boolean value

• Test-and-set (TAS)
– Swap true with current value

– Return value tells if prior value was true
or false

• Can reset just by writing false

• TAS aka “getAndSet”

Art of Multiprocessor Programming 14

Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

(5)

Art of Multiprocessor Programming 15

Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

Package
java.util.concurrent.atomic

Art of Multiprocessor Programming 16

Review: Test-and-Set

public class AtomicBoolean {
boolean value;

public synchronized boolean
getAndSet(boolean newValue) {
boolean prior = value;
value = newValue;
return prior;

}
}

Swap old and new
values

Art of Multiprocessor Programming 17

Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

Art of Multiprocessor Programming 18

Review: Test-and-Set

AtomicBoolean lock
= new AtomicBoolean(false)
…
boolean prior = lock.getAndSet(true)

(5)

Swapping in true is called
“test-and-set” or TAS

Art of Multiprocessor Programming 19

Test-and-Set Locks

• Locking
– Lock is free: value is false

– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win

– If result is true, you lose

• Release lock by writing false

Art of Multiprocessor Programming 20

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}}

Art of Multiprocessor Programming 21

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}}
Lock state is AtomicBoolean

Art of Multiprocessor Programming 22

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}}
Keep trying until lock acquired

Art of Multiprocessor Programming 23

Test-and-set Lock

class TASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (state.getAndSet(true)) {}

}

void unlock() {
state.set(false);

}}

Release lock by resetting
state to false

Art of Multiprocessor Programming 24

Space Complexity

• TAS spin-lock has small “footprint”

• N thread spin-lock uses O(1) space

• As opposed to O(n) in solutions that
keep record of who else is interested
(we’ll see later)

Art of Multiprocessor Programming 25

Performance

• Experiment
– n threads

– Increment shared counter 1 million times

• How long should it take?

• How long does it take?

Art of Multiprocessor Programming 26

Graph

ideal

ti
m

e

threads

no speedup
because of
sequential
bottleneck

Art of Multiprocessor Programming 27

Mystery #1

ti
m

e

threads

TAS lock

Ideal

(1)

What is
going
on?

Art of Multiprocessor Programming 28

Test-and-Test-and-Set Locks

Main idea:

Split the following lock line to two
while (state.getAndSet(true)) {}

Art of Multiprocessor Programming 29

Test-and-Test-and-Set Locks

• Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

• Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
– If TAS loses, back to lurking

Art of Multiprocessor Programming 30

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
}

Art of Multiprocessor Programming 31

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
} Wait until lock looks free

Art of Multiprocessor Programming 32

Test-and-test-and-set Lock

class TTASlock {
AtomicBoolean state =
new AtomicBoolean(false);

void lock() {
while (true) {
while (state.get()) {}
if (!state.getAndSet(true))
return;

}
}

Then try to
acquire it

Art of Multiprocessor Programming 33

Mystery #2

TAS lock

TTAS lock

Idealti
m

e

threads

Art of Multiprocessor Programming 34

Mystery

• Both
– TAS and TTAS

– Do the same thing (in our model)

• Except that
– TTAS performs much better than TAS

– Neither approaches ideal

Art of Multiprocessor Programming 35

Opinion

• Our memory abstraction is broken

• TAS & TTAS methods
– Are provably the same (in our model)

– Except they aren’t (in field tests)

• Need a more detailed model …

Art of Multiprocessor Programming 36

Bus-Based Architectures

Bus

cache

memory

cachecache

Art of Multiprocessor Programming 37

Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory
(10s of cycles)

Art of Multiprocessor Programming 38

Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•Broadcast medium
•One broadcaster at a time
•Processors and memory all
“snoop”

Bus

Art of Multiprocessor Programming 39

Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information

Art of Multiprocessor Programming 40

Jargon Watch

• Cache hit
– “I found what I wanted in my cache”

– Good Thing™

Art of Multiprocessor Programming 41

Jargon Watch

• Cache hit
– “I found what I wanted in my cache”

– Good Thing™

• Cache miss
– “I had to shlep all the way to memory

for that data”

– Bad Thing™

Art of Multiprocessor Programming 42

Cave Canem

• This model is still a simplification
– But not in any essential way

– Illustrates basic principles

Art of Multiprocessor Programming 43

Bus

Processor Issues Load Request

cache

memory

cachecache

data

Art of Multiprocessor Programming 44

Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

Gimme
data

Art of Multiprocessor Programming 45

cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got your
data right

here data

Art of Multiprocessor Programming 46

Bus

Processor Issues Load Request

memory

cachecachedata

data

Gimme
data

Art of Multiprocessor Programming 47

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Gimme
data

Art of Multiprocessor Programming 48

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

I got
data

Art of Multiprocessor Programming 49

Bus

Other Processor Responds

memory

cachecache

data

I got
data

datadata

Bus

Art of Multiprocessor Programming 50

Bus

Other Processor Responds

memory

cachecache

data

datadata

Bus

Art of Multiprocessor Programming 51

Modify Cached Data

Bus

data

memory

cachedata

data

(1)

Art of Multiprocessor Programming 52

Modify Cached Data

Bus

data

memory

cachedata

data

data

(1)

Art of Multiprocessor Programming 53

memory

Bus

data

Modify Cached Data

cachedata

data

Art of Multiprocessor Programming 54

memory

Bus

data

Modify Cached Data

cache

What’s up with the
other copies?

data

data

Art of Multiprocessor Programming 55

Cache Coherence

• We have lots of copies of data
– Original copy in memory

– Cached copies at processors

• Some processor modifies its own copy
– What do we do with the others?

– How to avoid confusion?

Art of Multiprocessor Programming 56

Write-Back Caches

• Accumulate changes in cache

• Write back when needed
– Need the cache for something else

– Another processor wants it

• On first modification
– Invalidate other entries

– Requires non-trivial protocol …

Art of Multiprocessor Programming 57

Write-Back Caches

• Cache entry has three states
– Invalid: meaningless content

– Valid: I can read but I can’t write
(may be cached elsewhere)

– Dirty: Data has been modified
• Intercept other load requests

• Write back to memory before using cache

Art of Multiprocessor Programming 58

Bus

Invalidate

memory

cachedatadata

data

Art of Multiprocessor Programming 59

Bus

Invalidate

Bus

memory

cachedatadata

data

Mine, all
mine!

Art of Multiprocessor Programming 60

Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Uh,oh

Art of Multiprocessor Programming 61

cache

Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

Art of Multiprocessor Programming 62

cache

Bus

Invalidate

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission

Art of Multiprocessor Programming 63

cache

Bus

Invalidate

memory

cachedata

data

Memory provides data only if not
present in any cache, so no need to

change it now (expensive)

(2)

Art of Multiprocessor Programming 64

cache

Bus

Another Processor Asks for
Data

memory

cachedata

data

(2)

Bus

Art of Multiprocessor Programming 65

cache data

Bus

Owner Responds

memory

cachedata

data

(2)

Bus

Here it is!

Art of Multiprocessor Programming 66

Bus

End of the Day …

memory

cachedata

data

(1)

Reading OK, no writing

data data

Art of Multiprocessor Programming 67

Mutual Exclusion

• What do we want to optimize?
– Bus bandwidth used by spinning threads

– Release/Acquire latency

– Acquire latency for idle lock

Art of Multiprocessor Programming 68

Simple TASLock

• TAS invalidates cache lines

• Spinners
– Miss in cache

– Go to bus

• Thread wants to release lock
– delayed behind spinners

Art of Multiprocessor Programming 69

Test-and-test-and-set

• Wait until lock “looks” free
– Spin on local cache

– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …

Art of Multiprocessor Programming 70

Local Spinning while Lock is
Busy

Bus

memory

busybusybusy

busy

Art of Multiprocessor Programming 71

Bus

On Release

memory

freeinvalidinvalid

free

Art of Multiprocessor Programming 72

On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses,
rereads

(1)

Art of Multiprocessor Programming 73

On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

(1)

Art of Multiprocessor Programming 74

Problems

• Everyone misses
– Reads satisfied sequentially

• Everyone does TAS
– Invalidates others’ caches

• Eventually quiesces after lock
acquired
– How long does this take?

Linearly with the number of processors

Art of Multiprocessor Programming 77

Mystery Explained

TAS lock

TTAS lock

Idealti
m

e

threads

Better than
TAS but still
not as good as

ideal

Art of Multiprocessor Programming 78

Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be lots of contention
• Better to back off than to collide again

Art of Multiprocessor Programming 79

Dynamic Example:
Exponential Backoff

time
d2d4d

spin lock

If I fail to get lock
– wait random duration before retry
– Each subsequent failure doubles
expected wait

Art of Multiprocessor Programming 80

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}

Art of Multiprocessor Programming 81

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}} Fix minimum delay

Art of Multiprocessor Programming 82

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}} Wait until lock looks free

Art of Multiprocessor Programming 83

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}} If we win, return

Art of Multiprocessor Programming 84

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}

Back off for random duration

Art of Multiprocessor Programming 85

Exponential Backoff Lock

public class Backoff implements lock {

public void lock() {
int delay = MIN_DELAY;
while (true) {
while (state.get()) {}
if (!lock.getAndSet(true))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)
delay = 2 * delay;

}}}

Double max delay, within reason

Art of Multiprocessor Programming 86

Spin-Waiting Overhead

TTAS Lock

Backoff lockti
m

e

threads

Art of Multiprocessor Programming 87

Backoff: Other Issues

• Good
– Easy to implement

– Beats TTAS lock

• Bad
– Must choose parameters carefully

– Not portable across platforms

Art of Multiprocessor Programming 88

Idea

• Avoid useless invalidations
– By keeping a queue of threads

• Each thread
– Notifies next in line

– Without bothering the others

Art of Multiprocessor Programming 89

Anderson Queue Lock

flags

next

T F F F F F F F

idle

Art of Multiprocessor Programming 90

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement

Art of Multiprocessor Programming 91

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement

Art of Multiprocessor Programming 92

Anderson Queue Lock

flags

next

T F F F F F F F

acquired

Mine!

Art of Multiprocessor Programming 93

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

Art of Multiprocessor Programming 94

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement

Art of Multiprocessor Programming 95

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement

Art of Multiprocessor Programming 96

acquired

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

Art of Multiprocessor Programming 97

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Art of Multiprocessor Programming 98

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Yow!

Art of Multiprocessor Programming 99

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];

Art of Multiprocessor Programming 100

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];

One flag per thread

Art of Multiprocessor Programming 101

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

int[] slot = new int[n];

Next flag to use

Art of Multiprocessor Programming 102

Anderson Queue Lock

class ALock implements Lock {
boolean[] flags={true,false,…,false};
AtomicInteger next
= new AtomicInteger(0);

ThreadLocal<Integer> mySlot;

Thread-local variable

Art of Multiprocessor Programming 103

Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}

Art of Multiprocessor Programming 104

Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
} Take next slot

Art of Multiprocessor Programming 105

Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
} Spin until told to go

Art of Multiprocessor Programming 106

Anderson Queue Lock

public lock() {

myslot = next.getAndIncrement();

while (!flags[myslot % n]) {};

flags[myslot % n] = false;
}

public unlock() {
flags[(myslot+1) % n] = true;
} Prepare slot for re-use

Art of Multiprocessor Programming 107

Anderson Queue Lock

public lock() {

mySlot = next.getAndIncrement();

while (!flags[mySlot % n]) {};

flags[mySlot % n] = false;
}

public unlock() {
flags[(mySlot+1) % n] = true;
}

Tell next thread to go

Art of Multiprocessor Programming 108

Performance

• Shorter handover than
backoff

• Curve is practically flat
• Scalable performance
• FIFO fairness

queue

TTAS

Art of Multiprocessor Programming 109

Anderson Queue Lock

• Good
– First truly scalable lock

– Simple, easy to implement

• Bad
– Space hog

– One bit per thread
• Unknown number of threads?

• Small number of actual contenders?

Art of Multiprocessor Programming 110

One Lock To Rule Them All?

• TTAS+Backoff, CLH, MCS, ToLock…

• Each better than others in some way

• There is no one solution

• Lock we pick really depends on:
– the application

– the hardware

– which properties are important

Art of Multiprocessor Programming 111

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to ―The Art of

Multiprocessor Programming‖ (but not in any way that suggests that

the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you

may distribute the resulting work only under the same, similar or a

compatible license.

• For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from

the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

