1 n1dIN

0"79/0%7 — 8 712N
'7XMT QONINIX OTN

Streams

Sources and Destinations

Typical sources and destinations are:

= Files

= Pipes (inter-process communication)

= Network connections

= In-memory buffers (e.g arrays)

= Console (system.in, System.out, System.err)

The Java 10 package provides classes to
handle all types of sources and destinations

nowa TN NbANJavA
28 0 N0

Streams

A program that needs to read data from a
source needs an input stream or reader

Source

N—
A program that needs to write data to a
destination needs an output stream or writer

>/ Output Stream / Writer
Program

Input Stream / Reader
Program

Destination

nowa TN nkanJava
2% 0 nooNIN

Using Streams

Depends on st_)urc_e/
create a stream — Cesunation
while more information

read/write information

close the stream

Does not depend on specific source / destination ‘

There are two categories of streams:

Byte streams for reading/writing binary
data

Character streams for reading/writing text
Suffix Convention:

category
direction Byte Character

Input InputStream Reader

Output OutputStream Writer

This is the general flow no matter what
the source / destination is

All streams are automatically opened
when created

nowa TN nbanJavé
22K 0 no'ONIX

InputStream Class Hierarchy

ByteArraylnputStream
FilelnputStream DatalnputStream
FilterinputStream BufferedInputStream

[InputStream]——[ObjectinputStream }

PushbackinputStream }

abstract ;
super-class PipedInputStream

SequencelnputStream
StringInputStream

OutputStream Class Hierarchy

ByteArrayOutputStream

Reader Class Hierarchy

FileOutputStream }

BufferedOutputStream }

{ OutputStream

FilterOutputStream

DataOutputStream }

super-class

abstract ObjectOutputStream } PrintStream

super-class

PipedOutputStream

Writer Class Hierarchy

[

super-class

Writer]——[OutputStreamWriter H FileWriter }
abstract

PipedWriter

PrintWriter

StringWriter

Console I1/0

BufferedReader H LineNumberReader }

CharArrayReader

FilterReader H PushbackReader }

InputStreamReader]—[FileReader }

PipedReader

abstract

Handling Exceptions

The System class provides references to the
standard input, output and error streams:

System.in - InputStream
System.out - PrintStream
System.err - PrintStream

now 07N NoNJath
2% M nooTIN

Handle exception

= using a try-catch block

Propagate the exception to the caller
= Add throws declaration

finally block is always executed at the end of
the try block

Stream Wrappers

Some streams wrap others streams and add
new features.

A wrapper stream accepts another stream in
its constructor:

DataInputStream din =
new DataInputStream(System.in) ;
double d = din.readDouble() ;

readBoolean () X -
readFloat () din System.in

DataInputStream InputStream

Stream Wrappers Example

Copy input to output

Reading a line of text from a file:

try {
FileReader in =
new FileReader ("FileReaderDemo.java") ;

BufferedReader bin = new BufferedReader (in) ;
String text = bin.readLine();

} catch (IOException e) {...}

readLiné_e) bim J C) in)

BufferedReader FileReader

Copy input to output

Don’t handle the exception, but indicate that we
might be throwing one as well (the one being thrown
from the method we use)

public static void copy() throws IOException {
Reader in = new InputStreamReader (System.in);,
Writer out = new OutputStreamWriter (System.out),

int c;
while ((c = in.read()) !'= -1) {

°Ut'wut:g)">\‘ might throw an exception

out. flus! 7

}
in.close();
out.close() ;

nowa TN NbANJaTE
22K 0 RUOTAIK

Copy input to output

public static void copy() throws IOException {

eader (System. in)

Read a single character from the source N
eamWriter (Svstem. out) ;

‘ -1 indicates the end of the input

int c;
while ((c = in.read()) !'= -1) {
out.write(c) ;
out.flush();

‘ Write a single character to the destination

}
in.close();
out.close() ;

nowa TN nhanJatd
2% 0 nooNIX

Copy input to output

public static void copy() throws IOException {
Reader in = new InputStreamReader (System.in);,

Writer out = new OutputStreamWritér (System.out) ;
int c;

Convertthe input stream attached to the keyboards into a
Reader

}
in.close() ;
out.close();

nowa TN NBINJatE
22K 0 noONIK

Copy input to output

public static void copy() throws IOException {
Reader in = new InputStreamReader (System.in);,
Writer out = new OutputStreamWriter (System.out) ;

int c;
Convertthe PrintStream (byte based) attached to the console
into a Writer
}

in.close() ;
out.close() ;

nowa 077NN NIRIAKE
2% M nooTIN

public static void copy() throws IOException {
Reader in = new InputStreamReader (System.in);,
Writer out = new OutputStreamWriter (System.out) ;

int c;

while ((c = in.read()) '= -1) {
out.write(c);
out. flush() ;

}

in.close();

out.close() ;

Close the streams once we’re done

nowa 077N NONJatd
2917 noroN

Java Files

To read from a file use FilelnputStream or
FileReader

To write to a file use FileOutputStream or
FileWriter

To access information about a file (length,
exist?, directory?) use the File class

nowa TN NRANJatE
2% oo

The File Class

Copy one file to another

The path to the file we're reading from
e.g. C:\Softwarel\example.txt

‘ The path to the file we're writing to ‘

Represents pathname (file or directory)

Retrieve meta data about a file

= isFile / isDirectory

= length

= exists

...

Performs basic file-system operations:
= removes a file: delete()

= creates a new directory: mkdir()

= checks if the file is writable: canWrite()

nowa TN NbANJaRA
28 0 N0

Parsing

public static void copy(String src, String dst)

throws IOException { =
Reader in = new FileReader (src); — Create a FileReader
Writer out = new FileWriter(dst)+—_| (reate a FileWriter

int c;
while ((c = in.read()) !'= -1) {
out.write(c);

out.flush(); — Exactly as before
}

in.close() ;
out.close() ;

nowa TN nkonJagd
2% 0 nooNN

Directory Listing

Breaking text into a series of tokens

The Scanner class is a simple text scanner
which can parse primitive types and strings
using regular expressions

The source can be a stream or a string

oW 077N NN
2% nooTIN

public class DirectoryListing {
public static void main(String[] args) throws IOException {
File file = new File(args[O0]):
System.out.println("Path = " + file.getCanonicalPath());

if (file.isDirectory()) {
for (File f : file.listFiles()) {
System.out.printf("$c\t%-10s\tsd\n",
f£.isDirectory() ? 'd' : 'f',
f.getName (),
f.length());

nowa TN nbanJaga
22K 0 NoONI

The Scanner Class

Breaks its input into tokens using a delimiter
pattern (default: whitespace)

The resulting tokens may then be converted
into values

eatiner s = new Scanne

em.in);

int anlnt = s.nextInt(); How can we be

sure that the user
will type-in the
correct input?

float aFloat = s.nextFloat();
String aString = s.next();

ing aline = s.nextLine();

nowa 077N NNONJad
291 noroNN

Online Resources

JAVA API Specification:
http://java.sun.com/j2se/1.6.0/docs/api/index.html

The Java Tutorial (Sun)
http://java.sun.com/docs/books/tutorial/essential/io/

no9VA 07NN NNONIARE
2% M noOTAK

http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/j2se/1.6.0/docs/api/index.html
http://java.sun.com/docs/books/tutorial/essential/io/
http://java.sun.com/docs/books/tutorial/essential/io/

