
Real-world Java

4 beginners

Dima, Superfish

github.com/dimafrid

Real world

● Hundreds of computations per second

– Each computation of sub-second latency

● Massive IO

● Lots of data

● In Web/Trading/Monitoring/Cellular/etc./etc.

● Squeezing every bit of juice out of HW

Real world – case study

● Google does 10B searches a day keeping entire

Web in the belly

● Twitter does 3000 tweets a minute (fanning out to

600K users)

● Netflix is responsible for 30% of US traffic in

certain hours

Real world – case study

● Superfish

– 150M requests a day

– 150K requests a minute @ peak time

– Must have sub-500ms response time

– ~0.5B data records

– 300K KPIs a minute

– Hundreds of machines

“Whatever you desire”:

● Core stuff (IO, concurrency, GC)

● Application development (frameworks/open source

recommendations/best practices)

● Monitoring (what, tools)

Core Java stuff - concurrency

● All about parallel utilization of HW resources

● Basic multi-threading: wait() & notify()

● java.util.concurrent – why?

– Introduced by Doug Leah in Java 5

– Thread pools

– Atomic counters

– Lock-less data structures

– Smart synchronizers

– Futures

Core Java stuff - concurrency

● Thread pools

– Creating thread is expensive (memory

allocation/”forking”/GC/book-keeping)

– Solution: pre-create (pooling)

● Atomic counters

– ++cnt is not thread-safe operation

● Lock-less data structures

– Locking is expensive

● Smart synchronizers

Core Java stuff - IO

● Readers/writers for EVERYTHING:

file/socket/string/object (serialization)

● Comprehensive javadoc

● Buffering

– Read in advance

– Making IO effective in terms of system calls

Core Java stuff - IO

● BIO (blocking IO)

– Wait until data is available

● NIO (non-blocking IO)

– Introduced relatively late in Java, somehow still lagging

– Old & good idea of notifying whenever data is available

– Single reading loop calling back upon data availability

● BIO vs. NIO – real life example:

– BIO: hundreds of threads, machine dead

– NIO: 6 data processing threads

– BIO straightforward, NIO harder to implement

Core Java stuff - GC

● There is no explicit memory deallocation in Java

– Garbage collector frees allocated memory

● Poorly tuned GC in heavy load env = major

contributor to high latency

● Definitely an expertise

Core Java stuff - GC

● Common model

– Reach-ability from roots (static & threads)

– Based on assumption that some objects are more

durable than others

– New and old gens, survivals, different collectors

● G1

– New

– No personal experience, so won't b**s you

Core Java stuff - GC

● Tuning

– Dozens of parameters

– Understand your memory patterns!

– High-throughput/low-pause oriented collectors

– Benchmarks unavoidable

– Diagnostics: GC log

Core Java stuff – Memory

● Couldn't resist this one:

● “No memory leaks in Java” - good reason to

terminate

– Even w/o esoteric scenarios, creating a memory leak in

Java is trivial

● “More memory is better” - like saying more butter

is better

– For better taste – yes

– For avoiding a coronary - no

Core Java stuff – others

● JDBC

● Generics

● Data structures (java.util) – know your data

structure under-the-hood

– really heavy-stuff of tuning hash maps, for example:

need to understand the implementation

● Etc. etc.

Application development

● A set of frameworks/toolkits that essentially

– Provide integration with other SW

– Make life easier – no need to write everything yourself

– Speed of development

● Let's talk about the most-wanted of Java app

development

Application development - Spring

● Essentially an integration framework

● Origin lays in IoC/dependency-injection model

within a container of Spring beans

– Spring bean is an instance of Java class declared in

container definition

– Deriving population/initialization from declared

dependencies

● On top of the container, there are integrations:

– Remoting, DB, unit testing, scheduling

– And messaging, AOP, etc. etc. etc.

Application development - Spring

<context:component-scan base-package="com.superfish.fbeng"/>

<context:annotation-config/>

<bean id="placeholderConfig" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

 <property name="locations">

 <list>

 <value>classpath*:config/*.properties</value>

 </list>

 </property>

</bean>

<bean id="statsPersister" class="com.superfish.realtime.services.search.StatsPersister">

 <property name="sessionFactory" ref="statsSessionFactory"/>

 <property name="persistOnceEveryX" value="1"/>

 <property name="peristThreadCount" value="10"/>

</bean>

Application development - Spring

@Repository

public class PhotoDaoImpl extends BaseJpaDaoImpl<String, PhotoEntity>

implements PhotoDao {

…..

 @Resource(name = "dataSource")

 private DataSource ds;

 @Autowired

 private PhotoDao imageDao;

…..

}

Application development - Spring

● Well-written (at least whatever I hacked)

● Rich

● Convenient

● Spend some time learning the internals (especially

DB-related stuff)

● Every recruiter recognizes a “Spring” word ...

Application development - REST

● How do you make 2 machines talk to each other

(HTTP implied)?

● SOAP

– Like calling a method

– Attempts to cover everything

– Like everything that wants to be perfect - dead

Application development - REST

● REST emerged

– Apart from being a Ph.D. material, it's essentially like a

page exchange over HTTP

– Simple because it's modeled after HTTP

– Implementations (REST is merely an idea with

standardization):

● Wink (personal experience)

● Jersey

● RestEasy

Application development - JPA

● Probably most important counter-part of any

application today is DB

● JPA bridges between OO world and relational DB

Application development - Servers

● The basic component of Java web server is servlet

container

● Servlet container is a place to put web applications

● Web application is a collection of servlets (and

everything needed to run their code) and mapping

of URLs to those servlets:

Application development - Servers

● tau.me:9090/rwj4b/search?student=Mark%20Zuck

erberg

● rwj4b – web app name

● search – path of reqest

● student=Mark%20Zuckerberg - query params

Application development - Servers

● <servlet>

● <servlet-name>dummy</servlet-name>

● <servlet-class>DummyServlet</servlet-class>

● </servlet>

● <servlet-mapping>

● <servlet-name>dummy</servlet-name>

● <url-pattern>search/*</url-pattern>

● </servlet-mapping>

Application development - Servers

public class DummyServlet extends HttpServlet {

 protected void doGet(HttpServletRequest req,

HttpServletResponse resp) throws

ServletException, IOException {

 String student = req.getParameter("student");

 resp.getWriter().write(student + " digs real life

java");

 }

}

Application development – VM

(dynamic) languages

● Scala

● Groovy

● Jython

● JRuby

Application development - management

● Not really directly related to Java

● Version management

– ClearCase (rolls royce, but expensive and requires management)

– Subversion (oldie, mediocre, choice of many)

– Git (version management is about branching, and that's what it

does best; complicated as hell for non-vanilla use-cases)

● Project management

– Don't really have any experience with anything but Maven

– Transparent dependency management

Application development - practice

● If you think you're missing a very important infrastructure:

– Don't write

– Find an open-source

– Understand how it works and then use/Throw away and write

yourself

● Apache.org: richness, quality – your first address

● Google open-sources state-of-the-art SW

– Collections (academic stuff)

– Gson

– …

● Unit-test (Junit, NG something) – not compulsively

Monitoring

● When you deal with hundreds of millions of

applicative operations, you have to understand

what's going on

● Local monitoring

● System profiling

● Visualization

Monitoring – Local (Java-level)

● Thread dumps

● GC logs

● Memory distribution

● Applicative logging

– Good logging requires thorough thinking as it's a valid basis for

further analysis

– Bad logging kills performance

● JMX

– Built-in ability to plug-in and access your custom code

– Widely used for diag

