
Passing Primitive Data Type Arguments

Primitive arguments, such as an int or a double, are passed into methods by value. This means

that any changes to the values of the parameters exist only within the scope of the method. When

the method returns, the parameters are gone and any changes to them are lost. Here is an

example:

public class PassPrimitiveByValue {

 public static void main(String[] args) {

 int x = 3;

 // invoke passMethod() with

 // x as argument

 passMethod(x);

 // print x to see if its

 // value has changed

 System.out.println("After invoking passMethod, x = " + x);

 }

 // change parameter in passMethod()

 public static void passMethod(int p) {

 p = 10;

 }

}

When you run this program, the output is:

After invoking passMethod, x = 3

Passing Reference Data Type Arguments

Reference data type parameters, such as objects, are also passed into methods by value. This

means that when the method returns, the passed-in reference still references the same object as

before. However, the values of the object's fields can be changed in the method, if they have the

proper access level.

For example, consider a method in an arbitrary class that moves Circle objects:

public void moveCircle(Circle circle, int deltaX, int deltaY) {

 // code to move origin of circle to x+deltaX, y+deltaY

 circle.setX(circle.getX() + deltaX);

 circle.setY(circle.getY() + deltaY);

 // code to assign a new reference to circle

 circle = new Circle(0, 0);

}

Let the method be invoked with these arguments:

moveCircle(myCircle, 23, 56)

Inside the method, circle initially refers to myCircle. The method changes the x and y

coordinates of the object that circle references (i.e., myCircle) by 23 and 56, respectively.

These changes will persist when the method returns. Then circle is assigned a reference to a

new Circle object with x = y = 0. This reassignment has no permanence, however, because

the reference was passed in by value and cannot change. Within the method, the object pointed to

by circle has changed, but, when the method returns, myCircle still references the

sameCircle object as before the method was called.

