Data Structures - Assignment no. 1, February 28, 2007

Remarks:

e Write both your name and your ID number very clearly on the top of the exercise. Write
your exercises in pen, or in clearly visible pencil. Please write very clearly.

e Recall that 80% of the theoretical exercises must be submitted. The exercises can and
must be worked on and submitted alone.

e Give correctness and complexity proofs for every algorithm you write.
e For every question where you are required to write pseudo-code, also explain your solu-

tion in words.

1. Which of the following statements are true and which are false? Only give an answer, you do
not have to explain:

(a) 40logn = O(8logn).

(b) 2"/300 = O(n).

(c) 40n +6 = O(2™ — 50).
(d) 40n + 6 = O(logn + 17).

2. A deque (double-ended queue) is an ADT (Abstract Data Type) that supports the following
operations:

Push(x,D): Inserts x at the head of the deque.
Pop(D): Removes the element at the head of the deque and returns it.
Inject(x,D): Inserts x at the tail of the deque.

Size(D): Returns the number of elements in the deque.

)
)
)
(d) Eject(D): Removes the element at the tail of the deque and returns it.
)
) Empty?(D): Returns true if and only if the deque is empty

)

Make-deque(): Generates an empty deque

Give a description, not in pseudo-code, of an implementation of this ADT that uses an array
of fixed size N. Define precisely the representation of your data structure. Then describe in
pseudo-code the implementations of Push(z, D), Size(D), and Eject(D). You can assume
that we never try to Pop(D) or Eject(D) when D is an empty deque, and that the size of the
deque never exceeds N. All operations should take O(1) time. Note that in order to avoid the
situation where the deque is almost empty but you can’t insert new elements, you’d probably
have the use the “circular array” technique that you learned in class. Note that the size of
the deque is bounded by N, so you don’t have to use the “doubling” method.



3. In the lecture you learned the “doubling” method that allows to implement a stack using an
array without placing a limit on the size of the stack, such that the amortized complexity
of each operation is O(1). The method is that every time the array gets full, a new array is
allocated whose size is twice the size of the old array, and the old array is copied to the new
array.

(a) Suppose we change the implementation so that the size of the new array is 4/3 times
the size of the old array. What is the time complexity of a sequence of m operations on
the worst-case? Prove! your answer.

(b) Suppose we change the implementation so that the size of the new array is 10 plus the
size of the old array. What is the time complexity of a sequence of m operations on the
worst-case? Prove your answer.

4. (a) Implement, in pseudo-code, a trenary (base-3) counter: You are given an infinite array
such that each cell can only hold the digits 0,1,2, and you want the counter to support
the operation increment() that increases the value of the counter by 1.

(b) Suppose you start from a counter initialized to 0 and you perform m increment() oper-
ations. What is their total cost? What is the amortized time complexity of increment?
Prove your answer.

5. Let L be a singly-linked list that consists of n elements. Each element contains a pointer
“next”. Someone possibly made a mistake, and the final element of the list, instead of having
a “null” pointer, might be pointing to an element inside the list. What does the following
pseudo-code do? What is its worst-case time complexity?

INPUT: z, which is a pointer to the first element of the list
Yy «— x.next
IF (y == NULL) THEN RETURN “true”
WHILE (y # x)
Yy <« y.next
IF (y == NULL) THEN RETURN “true”
Y <« y.next
IF (y == NULL) THEN RETURN “true”
T «— x.next
END WHILE
RETURN “false”

'Here and in the future — we don’t care which method you use to prove the claim, as long as it is correct!
Specifically, you can use a bank, the potential method, or any other method you like.



