
Data Structures - Assignment no. 4, March 21, 2007

Remarks:

• Write both your name and your ID number very clearly on the top of the exercise. Write

your exercises in pen, or in clearly visible pencil. Please write very clearly.

• Recall that 80% of the theoretical exercises must be submitted. The exercises can and

must be worked on and submitted alone.

• Give correctness and complexity proofs for every algorithm you write.

• For every question where you are required to write pseudo-code, also explain your solu-

tion in words.

1. Insert the keys 25, 33, 9 and 35 to the 2-4+ tree depicted in Figure 1. Then delete keys 10
and 20. Now draw the resulting tree.

2. (a) Give an algorithm that is given a binary tree T of n vertices with keys at the nodes, and
determines whether T is a binary search tree. The algorithm should run in time O(n).
Give: (i) pseudo-code; (ii) an explanation of the algorithm; (iii) an explanation why it
is correct; and (iv) an explanation why the running time is indeed O(n).

(b) Describe an algorithm that given a sorted array of size n builds a 2-4+ tree that contains
the same keys as the array. The algorithm should run in time O(n). Give: (i) a
description of the algorithm; (ii) an explanation why it is correct; and (iii) an explanation
why the running time is indeed O(n).

3. Consider a 2-4 search tree, where instead of having up to 4 children for every node, you have
up to log n children for every node. Suppose that each node is kept by a small data structure
that can do whichever manipulations you like, in constant time.

(a) What is the depth of this tree?

(b) What are the running times of the usual operations (insert, delete, find) for this tree?

Note 1: The assumption that a node can do whichever manipulations you like in O(1) time
is not very realistic. One way to justify it is considering the case where you have a very fast
subprocessor, capable of handling small amounts of data, but very quickly. You program it
in advance to perform all the manipulations you like on log n-sized nodes.

Note 2: You might want to use the fact that loga b = log a
log b

, so loglog n n = log n
log log n

.

4. (a) You are given a 2-4+ search tree where the root has exactly two children, u and v. Let
X be the number of descendants of v, and Y be the number of descendants of u. (In
other words, X is the size of the subtree of v, and Y is the size of the subtree of u). Is
it necessarily true that X ≤ 2006 · Y ? Explain your answer.

(b) Solve the same question for an R-B tree

1



5. Challange Question. Not to be Submitted.

Bounded-Balance Trees. In a binary tree, define the size of a vertex v, denoted by Sv, as
the number of vertices in v’s subtree. A binary search tree is called a bounded-balance (BB)
tree, if for every vertex v, it holds that Sv.left ≥ ⌊ Sv

10
⌋ and Sv.right ≥ ⌊ Sv

10
⌋, where v.left is

v’s left child, and v.right is v’s right child.

(a) Prove that if T is a BB tree containing n nodes, then the depth of T is O(log n).

(b) We define a BB tree data structure as follows: The data structure is a normal binary
search tree, with an additional field size at each vertex. The field v.size holds Sv.

Consider a sub-tree with root v, where v.left and v.right are both BB trees, and also
Sv = 10x, Sv .right = x−1, Sv.left = 9x. Thus, v’s subtree is not a BB tree, but there is
just one small violation. Show how to perform rotations that will correct this violation.
(Note: a little case-analysis is needed. In a certain case, you may need to perform two
rotations, not just one).

(c) Conclude from the last section that you can perform lookup, insertion and deletion in a
BB tree, all in time O(log n).

10 20 30 40 50

22

Figure 1: A 2-4+ tree. (Recall that a 2-4+ tree is a 2-4 tree where the real set elements are only the
keys that are at the leaves, and the rest of the elements are just pivot elements to aid in searching.)

2


