
Data Structures - Assignment no. 5, April 11, 2007

Remarks:

• Write both your name and your ID number very clearly on the top of the exercise. Write
your exercises in pen, or in clearly visible pencil. Please write very clearly.

• Recall that 80% of the theoretical exercises must be submitted. The exercises can and
must be worked on and submitted alone.

• Give correctness and complexity proofs for every algorithm you write.

• For every question where you are required to write pseudo-code, also explain your solu-
tion in words.

1. Insert the keys 5, then 9 and then 2 to the heap depicted in Figure 1. Then perform delete-min
four times. Now draw the resulting heap.

2. Show how to modify a 2-4+ search tree, in order to get a data structure that supports the
operations delete-min and insert in O(log n) time, and find-min in O(1) time. What are the
disadvantages of such an implementation of a heap, compared to the standard implementa-
tion?

3. Describe an algorithm that is given two heaps, both of size n, and returns a heap that contains
all elements of both heaps. (Assume that no key appears more than once in the input). Try
to make the algorithm as asymptotically efficient as possible. (Hint: the solution is very easy,
and can be described in one or two lines).

4. Describe an algorithm that prints the k smallest elements in a Heap. You can assume that the
heap is represented as an array or as a tree, whichever is more comfortable for you. As usual,
you may also assume that no key appears more than once in the heap. The algorithm should
take O(k log k) time. The algortihm should not modify the heap. Give: (i) pseudo-code; (ii)
an explanation of the algorithm; (iii) an explanation why it is correct; and (iv) an explanation
why the running time is indeed O(k log k).
Note: Observe that getting an algorithm that runs in time O(k log n), where n is the size of
the heap, is easy – just perform k delete-mins. (In order to avoid modifying the heap, you
need to undo your actions, which takes another O(k log n) time).

5. Describe an algorithm that solves the following problem. You are given k sorted lists A1, . . . , Ak,
each of length n. The output should be one sorted list which contains the keys of all input
lists. The algorithm should take O(nk log k) time. You may assume that no key appears more
than once in the input. Give: (i) an explanation of the algorithm; (ii) an explanation why it
is correct; and (iii) an explanation why the running time is indeed O(nk log k).
Hint: The merge procedure that is used as a subroutine in merge-sort (which you learned in
the course “extended introduction to CS”) answers this question for k = 2 in time O(n).

6. Consider an implementation of Fibonacci heaps without cascading cuts (all other details are
as shown in class, the only difference is that delete and decrease-key just cut the subtree
and do not continue with cascading cuts). For any large enough m show a sequence of m
operations on heaps of size at most n such that the average cost of an operation is as high as
possible. (By m large enough we mean larger even than some function of n.)

1



47 76 25

15

7

3

15

56 8930

Figure 1: A Heap.

2


