Data Structures - Assignment no. 6, June 6, 2007

Remarks:

- Please write your exercises in pen, or in clearly visible pencil. Please write very clearly.
- For every question where you are required to write pseudo-code, also explain your solution in words.

1. Manually run the quicksort algorithm on the array $(16,3,89,13,9,45,5,17,4,90,14,10,46,6,30)$. Assume that at every step the pivot that is chosen is the median element.
2. In this question we discuss a model called the "extended comparison model", which is like the comparison model, except that you are allowed 5 types of questions: (i) " $a=b$?", (ii) " $a<b$?", (iii) " $a>b$?", (iv) " $a<b+100$?", (v) " $a>b+100$?". Prove a lower bound of $\Omega(n \log n)$ for sorting an array of size n in the extended comparison model.
3. (a) You are given two arrays, A and B, each of size n. Give an algorithm that returns an array C of size n, such that $C[i]$ is equal to the number of elements of A that are less or equal to $B[i]$. The algorithm should run in time $O(n \log n)$. Describe the algorithm and explain why the running time is $O(n \log n)$. You do not have to give pseudo-code.
(b) Prove a lower bound of $\Omega(n \log n)$ for this problem in the comparison model.

Hint: You can prove this lower bound directly. However, it is easier to give a reduction. To do this, you should: (i) Prove that if you can solve this problem in time $f(n)$ then you can sort an array of size n in time $O(f(n)+n)$; (ii) Deduce from this that if you can solve this problem in time $f(n)$ then $f(n)=\Omega(n \log n)$.
4. (a) You are given an array of size n, which contains $\log n$ distinct elements, each of them occurring exactly $\frac{n}{\log n}$ times. Give an algorithm that sorts this array in time $O(n \log \log n)$. Describe the algorithm and explain why the running time is $O(n \log \log n)$. You do not have to give pseudo-code.
(b) Prove a lower bound of $\Omega(n \log \log n)$ in the comparison model for this problem.

Hint: Work like the lower bound that you have seen in class. First prove that there must be at least $(n!) /((n / \log n)!)^{\log n}$ leaves in the comparison tree. Then use Stirling's approximation of $n!$ to prove that the depth of the tree is $\Omega(n \log \log n)$. When using Stirling's approximation, it is enough to use that:

$$
n!=\Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^{n}\right)
$$

You can use this approximation without proving it.

