
Data Structures - Assignment no. 7, June 13, 2007

Remarks:

• Write both your name and your ID number very clearly on the top of the exercise. Write

your exercises in pen, or in clearly visible pencil. Please write very clearly.

• Recall that 80% of the theoretical exercises must be submitted. The exercises can and

must be worked on and submitted alone.

• Give correctness and complexity proofs for every algorithm you write.

• For every question where you are required to write pseudo-code, also explain your solu-

tion in words.

1. (a) Solve the recurrence relation T (n) = 2T (n/2) + n2 (you can use the recursion-tree
method).

(b) Prove the correctness of the solution you found in (a). (You can use induction).

2. Describe a data structure that implements a dictionary ADT. (The dictionary ADT maintains
a set of keys, S, and supports the operations insert(x), delete(x) and find(x)). Let n be the
number of operations performed on the data structure since it was created. The data structure
should implement insert and delete in time O(1) worst-case, and find in time O(n log n) worst
case. Also, the amortized complexity of all operations should be O(log n). (In other words,
the worst-case time of performing n operations should be O(n log n)). Describe the data
structure (no need to give pseudocode), and prove your claims about the running time.

3. A well-ordered heap is a regular heap, with the additional property that in each level of the
heap the elements, viewed from left to right, are in increasing order.

(a) Give an algorithm that gets as input n numbers, and outputs a well-ordered heap that
contains these numbers.

(b) Prove that the algorithm that you showed is optimal. That is, give a matching lower
bound for the problem. (Hint: you’ll probably want to prove the lower bound by giving
a reduction, like we showed in class and in exercise 6, question 3(b)).

4. (a) Suppose you are given an array of size n in which no element appears more than once,
and two integers k1 and k2 such that 1 ≤ k1 ≤ k2 ≤ n. Describe an O(n) time algorithm
that returns all of the elements whose ranks in the array are k1, k1 + 1, k1 + 2, . . . , k2.
Note that you do not have to return these elements in sorted order. (Note: The rank of
an element in an array is the number of elements smaller or equal to it).

(b) What running time could you get if we did require that the elements be returned in
sorted order?

5. Suppose you are given 3 sorted arrays of size n. You may assume that no element appears
in the input more than once. Describe an algorithm that computes the median of the union
of these arrays in time O(log n). Prove the correctness of your algorithm and prove the
running-time bound.

1


