Data Structures - Assignment no. 8, June 20, 2007

Remarks:

- Write both your name and your ID number very clearly on the top of the exercise. Write your exercises in pen, or in clearly visible pencil. Please write very clearly.
- Recall that 80% of the theoretical exercises must be submitted. The exercises can and must be worked on and submitted alone.
- Give correctness and complexity proofs for every algorithm you write.
- For every question where you are required to write pseudo-code, also explain your solution in words.

1. Find the order of growth for the following recursively given functions, using the Master Method.
(a) $T(n)=4 T(n / 2)+n$
(b) $T(n)=4 T(n / 2)+n^{2}$
(c) $T(n)=4 T(n / 2)+n^{3}$
(d) Explain why $T(n)=2 T(n / 2)+n \log ^{2} n$ cannot be solved using the Mater Method.
2. Find the order of growth for the following recursively given functions. Explain your answer.
(a) $T(n)=T(n-a)+T(a)+n$ where $a \geq 1$ is constant.
(b) $T(n)=T(c n)+T((1-c) n)+n$ where $0<c<1$ is a constant.
(c) $T(n)=2 T(n / 2)+n \log ^{4} n$ (Hint: The approach to solving this is similar to the approach to solving $T(n)=2 T(n / 2)+n)$.
3. ${ }^{1}$ Consider a hash table of size $m=1000$ and the hash function

$$
h(k)=\lfloor m \cdot(k \theta \bmod 1)\rfloor
$$

for $\theta=(\sqrt{5}-1) / 2$. Here, $x \bmod 1$ is the fractional part of the real number x, e.g. 15.1345 $\bmod 1=0.1345$. Compute the locations to which the keys $61,62,63,64,65$ are mapped.
4. ${ }^{2}$ A family \mathcal{H} of functions from U to $\{0,1, \ldots, m-1\}$ is called 100 -weakly universal if for all $x, y \in U$ such that $x \neq y$ it holds that

$$
\operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(x)=h(y)] \leq \frac{100}{m} .
$$

Let $U=\{0,1, \ldots, u-1\}$. Define f_{a} to be the function $f_{a}(x)=a \cdot x \bmod m$. Show that $\mathcal{H}=\left\{f_{a} \mid 0<a<m\right\}$ is not a 100-weakly universal family. (Hint: take u to be very large, compared to m).

[^0]5. Show how to modify the Hash Table data structure, such that all operations (find, insert and delete) take $O(\log n)$ time in the worst-case. All operations should still take $O(1)$ time in expectation. This question refers to the hash table data structure that you learned in class, using universal hashing and chaining. This does not refer to perfect hashing.
6. ${ }^{3}$ A closed hash table of size $2 n$ is used to store n items. (Closed hash is sometimes also called "open addressing").
(a) Assuming uniform hashing (i.e. each probe is done at a random location), show that for $i=1,2, \ldots, n$, the probability that the $i^{t h}$ insertion requires strictly more than k probes is at most 2^{-k}.
(b) Show that for $i=1,2, \ldots, n$, the probability that the $i^{t h}$ insertion requires more than $2 \log n$ probes is at most $1 / n^{2}$.
(c) Let the random variable X_{i} denote the number of probes required by the $i^{t h}$ insertion. You have shown in part (b) that $\operatorname{Pr}\left(X_{i}>2 \log n\right) \leq 1 / n^{2}$. Let the random variable $X=\max _{1 \leq i \leq n} X_{i}$ denote the maximum number of probes required by any of the n insertions. Use the union-bound to show that $\operatorname{Pr}(X>2 \log n) \leq 1 / n$.
(d) Use Markov's inequality this fact to show that the expected length of the longest probe sequence is $E[X]=O(\log n)$.

[^1]
[^0]: ${ }^{1}$ borrowed from LSE exercise on hash tables
 ${ }^{2}$ borrowed from course at Bar-Ilan

[^1]: ${ }^{3}$ taken from CLRS

