
1

Binomial heaps,
Fibonacci heaps,
and applications



2

Binomial trees

B0

B1

B(i-1)

B(i-1)

Bi



3

Binomial trees

B0

B1B(i-2)B(i-1)

. . . . . .

Bi



4

Properties of binomial trees

1)   | Bk | = 2k

2)   degree(root(Bk)) =  k

3)   depth(Bk) =  k

==>   The degree and depth of a binomial tree with at most  n 
nodes is at most log(n).

Define the rank of Bk to be k



5

Binomial heaps (def)

A collection of binomial trees at most one of every rank.
Items at the nodes, heap ordered.

55

6

1

65

8

2

95

10
Possible rep: Doubly link roots and 
children of every node. Parent 
pointers needed for delete.



6

Binomial heaps (operations)
Operations are defined via a basic operation, called linking, of 
binomial trees:
Produce a Bk from two Bk-1, keep heap order.

1

65

8

2

95

10

4

116

9

5

96

10



7

Binomial heaps (ops cont.)

Basic operation is meld(h1,h2):

Like addition of binary numbers.

B0B1B3B4

B0B3

h1:

h2: +

B1

B4

B2

B2

B4

B4

B5

B5



8

Binomial heaps (ops cont.)

Findmin(h): obvious

Insert(x,h) : meld a new heap with a single B0 containing 
x, with h
deletemin(h) : Chop off the minimal root. Meld the 
subtrees with h. Update minimum pointer if needed.

delete(x,h) : Bubble up and continue like delete-min

decrease-key(x,h,δ) : Bubble up, update min ptr if needed

All operations take O(log n) time on the worst case, except 
find-min(h) that takes O(1) time.



9

Amortized analysis

We are interested in the worst case running time of a sequence of 
operations.

Example: binary counter

single operation -- increment

00000
00001
00010
00011
00100
00101



10

Amortized analysis (Cont.)

On the worst case increment takes O(k). 

k  =  #digits

What is the complexity of a sequence of increments (on the 
worst case) ?
Define a potential of the counter:

Amortized(increment) = actual(increment) + ΔΦ

Φ (c) = ?



11

Amortized analysis (Cont.)

Amortized(increment1) = actual(increment1) + Φ1-Φ0

Amortized(increment2) = actual(increment2) + Φ2-Φ1

Amortized(incrementn) = actual(incrementn) + Φn-Φ(n-1)

…
…

+

ΣiAmortized(incrementi) = Σiactual(incrementi) + Φn-Φ0

ΣiAmortized(incrementi) ≥ Σiactual(incrementi) 
if Φn-Φ0 ≥ 0



12

Amortized analysis (Cont.)

Define a potential of the counter:

Φ (c) = #(ones)

Amortized(increment) = actual(increment) + ΔΦ

Amortized(increment) = 1+ #(1 => 0) + 1 - #(1 => 0) = O(1)

==>  Sequence of n increments takes O(n) time 



13

Binomial heaps - amortized ana.

Φ (collection of heaps) = #(trees)

Amortized cost of insert O(1)

Amortized cost of other operations still O(log n)



14

Binomial heaps + lazy meld

Allow more than one tree of each rank.

Meld (h1,h2) :

•Concatenate the lists of binomial trees.

•Update the minimum pointer to be the smaller of the 
minimums

O(1) worst case and amortized.



15

Binomial heaps + lazy meld
As long as we do not do a delete-min our heaps are just 
doubly linked lists:

411 6959

Delete-min : Chop off the minimum root, add its 
children to the list of trees.

Successive linking: Traverse the forest keep linking 
trees of the same rank, maintain a pointer to the 
minimum root.



16

Binomial heaps + lazy meld

Possible implementation of delete-min is using an array 
indexed by rank to keep at most one binomial tree of each 
rank that we already traversed. 

Once we encounter a second tree of some rank we link them 
and keep linking until we do not have two trees of the same 
rank. We record the resulting tree in the array

Amortized(delete-min) = 

= (#links + max-rank) - #links

= O(log(n))



17

Fibonacci heaps (Fredman & Tarjan 84)

Want to do decrease-key(x,h,δ) faster than delete+insert.

Ideally in O(1) time.

Why ?



18

Dijkstra’s shortest path algorithm

Let G = (V,E) be a weighted (weights are non-negative)
undirected graph, let s ∈ V. Want to find the distance (length 
of the shortest path), d(s,v) from s to every other vertex. 

s

3

3 2

3

2

1



19

Application #2 : Prim’s algorithm for 
MST

Start with T a singleton vertex.

Grow a tree by repeating the following step:

Add the minimum cost edge connecting a vertex in T to a 
vertex out of T.



20

Application #2 : Prim’s algorithm for 
MST

Maintain the vertices out of T but adjacent to T in a heap.

The key of a vertex v is the weight of the lightest edge (v,w) 
where w is in the tree.

Iteration: Do a delete-min. Let v be the minimum vertex and 
(v,w) the lightest edge as above. Add (v,w) to T. For each edge 
(w,u) where u∉T, 

if key(u) = ∞ insert u into the heap with key(u) = w(w,u)
if  w(w,u) < key(u) decrease the key of u to be w(w,u).

With regular heaps O(m log(n)).

With F-heaps O(n log(n) + m).



21

Suggested implementation for decrease-key(x,h,δ):

If x with its new key is smaller than its parent, cut the subtree
rooted at x and add it to the forest. Update the minimum 
pointer if necessary.



22

55

6

2

63

8

5

95

10
55

6

2

6

1

85

95

10



23

Decrease-key (cont.)

Does it work ?

Obs1: Trees need not be binomial trees any more..

Do we need the trees to be binomial ? 
Where have we used it ?

In the analysis of delete-min we used the fact that at most 
log(n) new trees are added to the forest. This was obvious 
since trees were binomial and contained at most n nodes.



24

Decrease-key (cont.)

5 6

2

6359

Such trees are now legitimate. 

So our analysis breaks down.



25

Fibonacci heaps (cont.)
We shall allow non-binomial trees, but will keep the degrees 
logarithmic in the number of nodes.

Rank of a tree = degree of the root.

Delete-min: do successive linking of trees of the same rank and 
update the minimum pointer as before.

Insert and meld also work as before.



26

Fibonacci heaps (cont.)
Decrease-key (x,h,δ): indeed cuts the subtree rooted by x if 
necessary as we showed.

in addition we maintain a mark bit for every node. When we 
cut the subtree rooted by x we check the mark bit of p(x). If it 
is set then we cut p(x) too. We continue this way until either 
we reach an unmarked node in which case we mark it, or we 
reach the root.

This mechanism is called cascading cuts.



27

2

4

5

9

10

12

20

8 11

6 14

16

15

7

12 15

9

16

5

6 14

4

8 11

2

20



28

Fibonacci heaps (delete)

Delete(x,h) : Cut the subtree rooted at x and then proceed with 
cascading cuts as for decrease key.

Chop off x from being the root of its subtree and add the 
subtrees rooted by its children to the forest

If x is the minimum node do successive linking



29

Fibonacci heaps (analysis)

Φ (collection of heaps) = #(trees) + 2#(marked nodes)

Want everything to be O(1) time except for delete and 
delete-min.

==> cascading cuts should pay for themselves

Actual(decrease-key) = O(1) + #(cascading cuts)
ΔΦ(decrease-key) = O(1) - #(cascading cuts)

==> amortized(decrease-key) = O(1) !



30

Fibonacci heaps (analysis)

Cascading cuts and successive linking will pay for 
themselves. The only question is what is the 
maximum degree of a node ? 
How many trees are being added into the forest when 
we chop off a root ?

What about delete and delete-min ?



31

Fibonacci heaps (analysis)
Lemma 1 : Let x be any node in an F-heap. Arrange the children 
of x in the order they were linked to x, from earliest to latest. 
Then the i-th child of x has rank at least i-2.

x

12

Proof: 

When the i-th node was linked it must have had at least i-1 
children.
Since then it could have lost at most one.



32

Fibonacci heaps (analysis)
Corollary1 : A node x of rank k in a F-heap has at least φk 

descendants, where φ = (1 + √5)/2 is the golden ratio.

Proof: 

Let sk be the minimum number of descendants of a node of rank 
k in a F-heap.

By Lemma 1 sk ≥ Σi=0si + 2
k-2

x

s0=1, s1= 2



33

Fibonacci heaps (analysis)
Proof (cont):

Fibonnaci numbers satisfy 

Fk+2 = Σi=2Fi + 2, for k ≥ 2, and F2=1

so by induction sk ≥ Fk+2

It is well known that Fk+2 ≥ φk 

k

It follows that the maximum degree k in a F-heap with n 
nodes is such that φk  ≤ n 

so k ≤ log(n) / log(φ) = 1.4404 log(n)


