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This tree is a legitimate
AVL tree...
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o Imbalance will only occur on the path from the inserted node
to the root (only these nodes have had their subtrees altered -
local problem)

o Rebalancing should occur at the deepest unbalanced node
(local solution too)
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Left-Right fixing
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We need two rotations here...(double rotation)
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Lets look at this more carefully
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o We fix the first node x on the way up
where there is a violation

o After the fix, x is at the same height as
it was before, so no nodes further up
towards the root will need to be
updated.

o Can implement using just per
node for rebalancing (the difference
between the heights of the children
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AVL Tree Delete

o Complications arise from the fact that
deleting a node can unbalance a number
of its ancestors
m insert only required you find the first

unbalanced node
m delete will require you to go all the way back
to the root looking for imbalances

o Must balance any node with a +2 balance factor (+2
the left sub-tree is 2 levels deeper, -2 the right sub-tree is 2 levels
deeper)

AVL Tree Delete

o An AVL delete is similar to a regular binary
tree delete
m search for the node
= remove it
o zero children: replace it with null
o one child: replace it with the only child

o two children: replace it with right-most node in the
left subtree




AVL Tree Delete

o Traversing back to the root
= now we need to return 2 values
o one indicating the height of the sub-tree has changed
o another to return the deleted value
m one of the values will need to be “returned”
through the parameters

o will create a data TreeNode to place the returned
data into

Return Values

o The delete method should return true if
the height of the subtree changes
m this allows the parent to update its balance
factor
o A TreeNode reference should be passed
into the delete method

m if the key is found in the tree, the data in the
node should be copied into the TreeNode
element passed into delete

Delete Situations

o Node to delete has two children
m copy nodes data into the TreeNode data field
» find the node to replace this one with
o descendant farthest right in left sub-tree
m then make a copy of the replacement node
o do not want to move the original
m insert the copied replacement in place of the
node to delete
m delete the original replacement node

o to do this, call the delete method recursively
= do not just delete it

AVL Tree Delete

@ delete(L)

requlres a
rotate left-right
of node G)

Notice that even after fixing J, M is still out of balance

Returning Two Values

o Here is a simple example:

void main() {
TreeNode data = new TreeNode(null);
if(someMethod(data))
System.out.printin(data.key.toString()); // prints 5
H

boolean someMethod(TreeNode data) {
data.key = new Integer(5);
return true;

Delete Situations

o Node to delete is a leaf
= copy nodes data into the TreeNode data field
= make the nodes parent refer to null
o remember to consider deleting the root
= return true
o the height of the sub-tree went from 1 to zero
o Node to delete has only one child
= copy nodes data into the TreeNode data field
= make the nodes parent refer to its only child
o remember to consider deleting the root
= return true
o height of sub-tree has been decreased one level




Changing Height

o So how do we know whether or not to
return true?
m if a recursive call returns false, number of
levels below unchanged
o return false
m if it's a leaf or only has one child, lost a level
o return true
m if a recursive call returns true and the balance
factor goes to zero, lost a level

o was unbalanced, now it's not — this only happens if
one side or other loses a level to balance things

o return true

Deleting Replacement Node

o So why make a copy of node to replace?

» remember, we need to keep all nodes between
the deleted node and the replacement node
balanced

m well, that's what the delete method does

m consider what happens when calling delete
with the replacement node
o guaranteed replacement doesn’t have two children
= it gets deleted and returns true
o replacements parent will get back true and update its
balance factor

= it will then return (true or false) and eventually we will
get back to the node we deleted

Rotating Nodes

o) %)
e oW W)
©) o) o) ©) 69) (@) ©)

@)

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is 1 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does change in this case.

Rotating Nodes

o Very similar theory to insert
m One major difference
o if a node was inserted and another node had to be
balanced, the child to rotate with had a balance
factor of -1 or 1 — never zero
o when deleting a node, it is possible for the child to
rotate with to be zero

Rotating Nodes
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Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.

Rotating Nodes
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Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is 0 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does not change in this case.




Deleting a Node

O boolean delete(Comparable key, TreeNode subRoot,
TreeNode prev, TreeNode data) {
1) if subRoot is null, tree empty or no data
return false
1) compare subRoot’s key, K, to the delete key, K;
A) if K, < Ky, need to check the right sub-tree
-> call delete(key, subRoot.right, subRoot, data)
-> if it returns true, adjust balance factor (-1)
-> if it returns false, just return false
B) if K, > K, need to check the left sub-tree
-> call delete(key, subRoot.left, subRoot, data)
-> if it returns true, adjust balance factor (+1)
-> if it returns false, just return false

Rotating Nodes
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Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it's right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.
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O a single restructure is O(1)
m using a linked-structure binary tree
o find is O(log n)
= height of tree is O(log n), no restructures needed
o insert is O(log n)
m initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)
o remove is O(log n)
= jnitial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)

Delete Continued

o Delete continued
¢) if K, == K, this is the node to delete

-> if zero or 1 children, make parent “go around”
subRoot and return true

-> if two children, find replacement node, copy it,

insert copy into subRoots place, and delete the
original replacement node

* if delete returns true, increase bal by 1
I11) If the code gets this far
A) if subRoot’'s balance factor equals 2 or -2, balance the tree
B) if, after balancing tree, subRoot’s balance factor equals 0O
-> return true
C) if, after balancing tree, subRoot’s balance factor is not 0
-> return false

The End
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O AVL Trees on Wikipedia

o AVL Tree applet

o Nice Red-Black tree demo
o Another AVL/RB tree applet




