Data Structures - Assignment no. 3

Remarks:

e Write both your name and your ID number very clearly on the top of the exercise. Write
your exercises in pen, or in clearly visible pencil. Please write very clearly.

e Recall that 80% of the theoretical exercises must be submitted. The exercises can and
must be worked on and submitted alone.

e Give correctness and complexity proofs for every algorithm you write.

e For every question where you are required to write pseudo-code, also explain your solu-
tion in words.

1. Insert the keys 5, then 9 and then 2 to the heap depicted in Figure 1. Then perform delete-min
four times. Now draw the resulting heap.

2. Describe an algorithm that melds two binary heaps, represented by arrays, into one binary
heap. Denote by n the sum of the sizes of the heaps. (Assume that no key appears more than
once in the input). Try to make the algorithm as asymptotically efficient as possible. (Hint:
the solution is very easy, and can be described in one or two lines).

3. Describe an algorithm that prints the k& smallest elements in a binary heap. You can assume
that the heap is represented as an array or as a tree, whichever is more comfortable for you.
You may also assume that no key appears more than once in the heap. The algorithm should
take O(klogk) time. The algorithm should not modify the heap. Give: (i) pseudo-code; (ii)
an explanation of the algorithm; (iii) an explanation why it is correct; and (iv) an explanation
why the running time is indeed O(klog k).

Note: Observe that getting an algorithm that runs in time O(klogn), where n is the size of
the heap, is easy — just perform k delete-mins. (In order to avoid modifying the heap, you
need to undo your actions, which takes another O(klogn) time).

4. A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) How would you represent a d-ary heap in an array?
(b) What is the height of a d-ary heap of n elements in terms of n and d?

(c¢) Give an efficient implementation of find-min. Analyze its running time in terms of d and
n.

(d) Give an efficient implementation of insert. Analyze its running time in terms of d and
n.

(e) Give an efficient implementation of decrease-key(A,i,0), which sets A[i] to min(A[i],d)
and updates the heap structure appropriately. Analyze its running time in terms of d
and n.



5. 1) Prove the following properties of binomial trees:

(a) A binomial tree of rank k has 2k vertices.

(c) A binomial tree of rank k has (ff) vertices of depth 7.

)

(b) A binomial tree of rank & has depth k.
)
)

6. (a) Draw the corresponding binomial heap at the end of each line in the following sequence.

Insert the keys 10, 20, 3, 8, 30, 2, 25, 22, 35, 1, 32 to an empty binomial heap Hj.
Insert the keys 60,12, 30,82 to an empty binomial heap Hs

ngMeld(Hl, HQ)

Insert the keys 15,18,8,10,17,8 to an empty heap Hy.

Hs=Meld(Hs, Hy)

Delete-Min(Hs)

Decrease the key of the node in Hs that contain ’17” — to ’10’

Decrease the key of the node in Hj that contain '20° — to 0’

(b) Say you perform the same sequence as in (a) on a binomial heap with ”lazy meld”. Draw
the heap at the end of the sequence. Assume that:

when you meld two heaps Hi and Hs you put the trees of H; before the trees of Ho;

After successive linking you put the trees in the list sorted by increasing ranks;

®0 @R
GRON

Figure 1: A Heap.



