D'1N1 '1an

3 720N

NY'OW TN

DITINN D'INIT WIS'N XY

O'"INX1I'2 YI9'N 'Yy

O(h) x'n n'wvs niy D 1k O

NN I7NN1'AN 10213 ,0'NY N YA Yy [N O
O(logn)
?|TIXn NP7 Y7 0Na Ty O

L O
O ® 0
O

G.M. Adelson-Velskii / EM.Landis 1962 A VL. "XV

(N21a N1'Nan) |TIXN K1 WI9'N YV O

T yy 99 v nmnao nnix 7512y O
1 Tva NIW NI'R% 713! V-7 NN D'YYN NN D2 =




AVL yy 7¥ nan

O(logn) xin ninnon n z'tnnn T yy YW naa :nn O
NNdIn O
AVL yya n'm1o o'nny 7w ' ‘on ,n(h) nx xym =
h naiva
n(2)=2,n(1)=1"nma =
YV NN Lwniwn Nk 7on hnanwa AVL Yy ,n=31ay =
h-2 nino? %w nama yyv nni h-1 nanma
n(h)=1+n(h-1)+n(h-2) X"t =

AVL Yy 7w nan

n(h-1) > n(h—2) = n(h) > 2n(h - 2)
n(h) > 2n(h-2)
n(h) > 4n(h - 4)

nmTo

n(h) > 2'n(h - 2i)

= n(h) > 2h/2’1 mTon [Nno
=h<2 |0g n(h) +2 DTN W7 Al
= h=0(logn) 9"on

Insertion




YYD [IT'KQ T7nN1 ,0'07vnn 07yn)

NYTN N'M"15 Nnix

This tree is a legitimate
AVL tree...

nNAIT TIY




YTNN NNIXN NKXR 9'0i

4

YVn Ni'ZIiN DX 119N

Rotate around
this edge 4

NIX"AYUN NIX [7N]




NNAIT TIY

YTNN NNIXN NKXR 9'0i

4

D'7INN 7Y N95N 1727 Qv

Rotate around
this edge ? 4




NOTIV X7 N'YLNN DYO9N

MIWY7 N1 NN

this edge ?

DTIZN MR 11TN

Rotate around
this edge 4




D'ZINN N9N DX 7N

3

29700 DNMYRN NN X

I7|7W)'_] '"1'Y YoIn 'alo

Left-left o Left-Right o



DN7Y ARINN NRINNI

Right-Right o Right-Left O

N7 n'van v 7Ono)

D'NIN NNNRY Y
o Imbalance will only occur on the path from the inserted node
to the root (only these nodes have had their subtrees altered -
local problem)

o Rebalancing should occur at the deepest unbalanced node
(local solution too)

Left-left = single rotation

Rotate around this Before o After o
edge
—




Left-Right fixing

« Before:

i

Lets look at this more carefully

« Before:

i

We need two rotations here...(double rotation)

* Before: « After:
Rotate
around
this
Rotate edge
around

this
edge




10

"72am" '8N 101N NNIX N90INA

v DN Mwaw 17 my O

Before o After o
— ,NIX NOOINA [IT'R 101N
naia rebalancingn 'nxY
XIN 179 WAIYNY YYD NN
LIT'R 101N NNMAY NNRIXD
ANX7YW X'T AT NIK WKWl
' (D"NY IR D'YON) IT'R

Q01N 7T Ywnn? I

D ,yYa N e ITR
1IN 'R NIKTIR

nid>'o

o We fix the first node x on the way up
where there is a violation

o After the fix, x is at the same height as
it was before, so no nodes further up
towards the root will need to be
updated.

o Can implement using just per

node for rebalancing (the difference
between the heights of the children

AVL Tree Delete
o An AVL delete is similar to a regular binary
tree delete
= search for the node
= remove it

zero children: replace it with null
one child: replace it with the only child

two children: replace it with right-most node in the
left subtree



11

AVL Tree Delete

o Complications arise from the fact that
deleting a node can unbalance a number
of its ancestors

= insert only required you find the first
unbalanced node

= delete will require you to go all the way back
to the root looking for imbalances

Must balance any node with a +2 balance factor (+2
the left sub-tree is 2 levels deeper, -2 the right sub-tree is 2 levels
deeper)

AVL Tree Delete

delete(L)
(requires a
rotate left-right
of node G)

.

Notice that even after fixing J, M is still out of balance

Rotating Nodes

r
(o]

)
@ delete(L)
ONO,

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it's right sub-tree.

S’s balance factor is 1 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does change in this case.



12

Rotating Nodes

) &)
dtggg@A@
® ©

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is 0 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does not change in this case.

Rotating Nodes

O )
(@) € () @) )
D

Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.

Rotating Nodes

O

© D
HH B @ oW

Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.




13

nX"M 1t

o a single restructure is O(1)
= using a linked-structure binary tree
o find is O(log n)
= height of tree is O(log n), no restructures needed
o insertis O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)
o remove is O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)

D'yYnN D'71'7

O 0O o g

The End


http://en.wikipedia.org/wiki/AVL_trees
http://www.csi.uottawa.ca/~stan/csi2514/applets/avl/BT.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://webpages.ull.es/users/jriera/Docencia/AVL/AVL tree applet.htm

