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This tree is a legitimate
AVL tree...
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o Imbalance will only occur on the path from the inserted node
to the root (only these nodes have had their subtrees altered -
local problem)

o Rebalancing should occur at the deepest unbalanced node
(local solution too)

Left-left = single rotation

Rotate around this Before o After o
edge
—




Left-Right fixing

« Before:

i

Lets look at this more carefully

« Before:

i

We need two rotations here...(double rotation)

* Before: « After:
Rotate
around
this
Rotate edge
around

this
edge
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o We fix the first node x on the way up
where there is a violation

o After the fix, x is at the same height as
it was before, so no nodes further up
towards the root will need to be
updated.

o Can implement using just per

node for rebalancing (the difference
between the heights of the children

AVL Tree Delete
o An AVL delete is similar to a regular binary
tree delete
= search for the node
= remove it

zero children: replace it with null
one child: replace it with the only child

two children: replace it with right-most node in the
left subtree
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AVL Tree Delete

o Complications arise from the fact that
deleting a node can unbalance a number
of its ancestors

= insert only required you find the first
unbalanced node

= delete will require you to go all the way back
to the root looking for imbalances

Must balance any node with a +2 balance factor (+2
the left sub-tree is 2 levels deeper, -2 the right sub-tree is 2 levels
deeper)

AVL Tree Delete

delete(L)
(requires a
rotate left-right
of node G)

.

Notice that even after fixing J, M is still out of balance

Rotating Nodes

r
(o]
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@ delete(L)
ONO,

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it's right sub-tree.

S’s balance factor is 1 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does change in this case.
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Rotating Nodes
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Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is 0 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does not change in this case.

Rotating Nodes
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Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.

Rotating Nodes

O
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Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.
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o a single restructure is O(1)
= using a linked-structure binary tree
o find is O(log n)
= height of tree is O(log n), no restructures needed
o insertis O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)
o remove is O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)
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The End


http://en.wikipedia.org/wiki/AVL_trees
http://www.csi.uottawa.ca/~stan/csi2514/applets/avl/BT.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://webpages.ull.es/users/jriera/Docencia/AVL/AVL tree applet.htm

