0'"INX1'2 vI9'N '}y

O(h) x'n n'vo niy D1k O

NN N2 ,DNY NV YY N1na 0
O(logn)
?ITIRA NIfA'Y? YY'7 0N 1Y O

AVL Yy 7 naa

O(logn) xin ninnon n 'rnnan T yy W nan :nn? O
NNDINn O
AVL yya n'mno o'mny 7w *mam 'on ,n(h) nk xym =
h nan ‘wa
n(2)=2,n(1)=1an0a =
YV NN Lwniwn NX 7on hnan va AVL Yy ,n=31ay =
h-2 nine? 7w nama yyv nni h-1 nanma
n(h)=1+n(h-1)+n(h-2) X"t =

Insertion

0'11N1 '1An

3 720N

NY'OW TN

DITINN D'INIT WIS'N XY

G.M. Adelson-Velskii / EM.Landis 1962 A V1. "XV

(N21a n1'nan) |TIXN K1 WI9'N YV O

Tyy 7w vnmnao nnix 7512y O
1 Tya NAW NI'R% 713! V-7 NN D'YYN NN D2 =

AVL Yy 7w naIa

n(h-1)>n(h-2)=n(h)>2n(h-2)
n(h) >2n(h-2)

n(h) >4n(h-4)

n(h) > 2'n(h - 2i)

= n(h) > 2"** anTon (AN
=h<2logn(h)+2 ommnawran

= h=0(logn) 2"wn

NYTN N'M"I9 NNIX YVn |IT'R2 TN ,0'o7YnN n7yna

This tree is a legitimate
AVL tree...

YTNnN NNIXN NX §'oi NNAIT TIY

4

NIX'AYN NN |7 YV NI'PIN NIX 12190

Rotate around
this edge 4

YTNnN NNIXN NX §'oi NNAIT TIY

4

NATIY X7 N'YLINN DYON D'ZINN 7w N9N 1727 Y

Rotate around
4 this edge ? 4

DTIPN N7 M7 ?NIwy? N1 nn

Rotate around
this edge 4 4

this edge ?

2900 DNMATRN NN TR D'PINN N9 NX N7'N

3

DN7Y AXINN NRIMNI I7|7WYJ "11'w 101N 'alo

Right-Right o Right-Left o Left-left o Left-Right o

Left-left = single rotation N'2R17 n'van v 7Ono)

D'NIN NNNRY Y
Rotate around this Before O After o o Imbalance will only occur on the path from the inserted node
edge to the root (only these nodes have had their subtrees altered -

~ local problem)

o Rebalancing should occur at the deepest unbalanced node
(local solution too)

Lets look at this more carefully

« Before:

i

"72am" IT'RN 101N NNIX N90INA

Before O After o
,NIX N9OINA |IT'X 10IN
naia rebalancingn nxY
NIN 179 WIWNWY YYD NN
LIT'R 01N NN'AY NNIXD
§ § ANN7Y X'T 1T INIK IR
- - - ' (D"NY IX D'YON) IT'R

101N 7MY wnn? i

D,YV2 N2 NI ITR
Inm 'R NIKTIR

AVL Tree Delete
o An AVL delete is similar to a regular binary
tree delete
= search for the node
= remove it

o zero children: replace it with null
o one child: replace it with the only child

o two children: replace it with right-most node in the
left subtree

¥ 0Nt waw 27 Y o0

Left-Right fixing

« Before:

We need two rotations here...(double rotation)

« Before: « After:

Rotate
around
this

Rotate edge

around

this

edge

nid'o

o We fix the first node x on the way up
where there is a violation

o After the fix, x is at the same height as
it was before, so no nodes further up
towards the root will need to be
updated.

o Can implement using just per
node for rebalancing (the difference
between the heights of the children

AVL Tree Delete

delete(L) @

(requires a
rotate left-right
of node G)

@) (@ &

(©)

Notice that even after fixing J, M is still out of balance

Rotating Nodes

)
&)

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it's right sub-tree.

S’s balance factor is 0 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does not change in this case.

Rotating Nodes

)
@/ delete(L) ‘{ ?\

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.
S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.

Notice that the height of the tree changes.

AVL Tree Delete

o Complications arise from the fact that
deleting a node can unbalance a number
of its ancestors

= insert only required you find the first
unbalanced node

= delete will require you to go all the way back
to the root looking for imbalances

Must balance any node with a +2 balance factor (+2
the left sub-tree is 2 levels deeper, -2 the right sub-tree is 2 levels
deeper)

R()tating Nodes

fw)
@ delete(L)
€ o)

Deleting a node in the left sub-tree (M’s balance becomes 2).
Need to rotate M with it’s right sub-tree.

S’s balance factor is 1 before rotate.

Just do a rotate left of node S.

Notice that the height of the tree does change in this case.

Rotating Nodes

delete(L)
:>

Deleting a node in the left sub-tree (M’s balance becomes 2).

Need to rotate M with it’s right sub-tree.

S’s balance factor is -1 before rotate.

Need to do a right rotate of Q with S and then a left rotate of Q with M.
Notice that the height of the tree changes.

D'ynN D'71'7

O 0O oo

nx" "t

a single restructure is O(1)
= using a linked-structure binary tree
find is O(log n)
= height of tree is O(log n), no restructures needed
insert is O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)
remove is O(log n)
= initial find is O(log n)
= Restructuring up the tree, maintaining heights is O(log n)

The End

http://en.wikipedia.org/wiki/AVL_trees
http://www.csi.uottawa.ca/~stan/csi2514/applets/avl/BT.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/RedBlackTree-Example.html
http://webpages.ull.es/users/jriera/Docencia/AVL/AVL tree applet.htm

