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[nsert (cont)

Insert (cont)

Insert (cont)




[nsert (cont)

Use rotations

~<

Insert (cont)




[nsert (cont)

Insert (cont)

Insert (cont)




[nsert (cont)

Insert (cont)

Insert (cont)




[nsert -- definition

Convert a leaf to a red internal node with two leaves.

This may create violation to property 2. To restore it we walk up
towards the root applying one of the following cases (each case
has a symmetric version)

Insert -- terminal cases
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[nsert - analysis

J

O(log n) time worst case, since the height is O(log n)

Suppose you start with an empty tree and do m insertions such
that the point of insertion is given to you each time, how much
time does it take ?

Obviously O(mlog n),
but maybe we can prove it cannot be that bad ?

Insert - analysis

Each time we do a color-flip-step the number of red nodes
decreases by one.

®(tree) = #red nodes

Actual(insert) = O(1) + #color-flips-steps

A®(insert) = O(1) - #color-flips-steps
==> amortized(insert) = O(1)
and the sequence actually takes O(m) time.

Delete -- example
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Delete -- example (cont)

Delete -- example (cont)

Delete -- example2 (cont)
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Delete -- example2 (cont)

Delete -- example2 (cont)

Delete -- example2 (cont)
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Delete -- definition

Replace the parent of the external node containing the item with
the sibling subtree of the deleted item

If the parent of the deleted item is black then we create a short
node

To restore the black constraint we go bottom up applying
one of the following cases.

Delete -- fixing a short node

(1)

Delete -- fixing a short node (cont)
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Delete -- tixing a short node (cont)

(5)

N

And apply one of the previous 3 cases.

Delete + insert -- analysis

O(log n) time, since the height is O(log n)

Suppose you start with an empty tree and do m insertions and
deletions such that the point of insertion is given to you each
time, how much time does it take ?

Obviously O(mlog n),
but maybe we can prove it cannot be that bad ?

Delete + insert - analysis

The previous potential won't do the trick

®(tree) = #red nodes

Here are the transformation that we want to release potential
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Delete + insert -- analysis

Delete + insert -- analysis

d(tree) = # 2
(tree) (A ) + #( )

==> amortized(delete) = O(1)
amortized(insert) = O(1)

sequence of m delete and inserts, starting from an empty
tree takes O(m) time



