HOMEWORK #1

SUBMISSION DUE DATE: 30/11/2020 23:00
SUBMISSION IN SINGLES OR PAIRS

INTRODUCTION

The K-means algorithm is a popular clustering method for finding a partition of N unlabeled
observations into K distinct clusters, where K is a parameter of the method.

In this assignment you will implement this algorithm in both Python and C.
The goals of the assighnment are:

e Get familiar with the working environment and the IDEs.

e Practice the material taught in class both for C and Python.

e Transform a known algorithm into working executable code.

e Read input stream and process it.

e Create an interface for programs.

e Experience the difference in the programming effort and the running time of both
languages.

Throughout this document, the sections are in blue and their subsections are in lighter
blue.

DEVELOPMENT ENVIRONMENT AND SETUP

This assignment requires connecting to the faculty server, Nova. Experience it as soon as
possible to ensure everything works. If you have issues connecting to Nova, please visit
https://www.cs.tau.ac.il/system/ for support.

Students may work in any development environment they like. However, we encourage you
to use eclipse CDT and PyCharm as your development tool (those are environments we are
more confident with giving appropriate support). Your submission will be automatically
checked, so your code should run properly on Nova. You can remotely connect to the server
as described below.

USEFUL LINKS

You can download PuTTY and WinSCP from here:
http://www.cs.tau.ac.il/system/downloads . Recall that we recommend working with
eclipse; please follow the installation guidelines for eclipse in Moodle. For PyCharm
Community version, see: https://www.jetbrains.com/pycharm/download/

(note the installation instruction section there as well).

CONNECTING TO NOVA AND FILE TRANSFER

In order to transfer files to/from Nova, you can make use of WinSCP:

h Login

[Z New Site

Session
File protocol:
SFTP

Host name:

X

Port number:

|nova.cs.tau.arﬂil

23

User name:

Password:

Imushe

[[eeseeese

Save v

Tools v

Before logging in, select "Advanced" (circled above) to define a tunnel to gate.tau.ac.il:

Manage v

Login

|+ Close

Help

Advanced Site Settings ? X

Environment Connect through SSH tunnel

i Directories

Recyde bin Host to setup tunnel on

- SFTP Host name: Port number:

i Shell lgahe.tau.ac.il I l 222 I
Connection

L Proxy User name: Password:

- Tunnel [moshe |[seseseee |
SSH

Key exchange Tunnel options

i Authentication

i Bugs Local tunnel port:
Note

Tunnel authentication parameters
Private key file:
N
Color ¥ III Cancel Help

Once connected, drag files from the left part (your computer) to the right (Nova):

B Custom Office Templates - moshesulamy@nova - WinSCP - o X
Local Mark Files Commands Session Options Remote Help
BB &2 63 Synchronize Bl o B & | (59 Queue - Transfer Settings Default v @ [ZMydocuments =il
[moshesulamy@nova [New Session
BRI % *- sp1 -EE BER T @ Findfes % e -
£ (& 2 g & (&
e Office Templates
Name Size Type Changed Name - Size Ch
it Parent directory 07/11/2016 18] | .. 13|
[in1 1KB 14
& main.c 1KB 14
(7] makefile 1KB 22
¥ Software Project - Tutorial 1.pptx 887KB 13
< >« >
0B of 0Bin0of0 0B of 888 KB in 0 of 4
@ sFe3 0:00:49

REMOTE CONNECTION TO NOVA

To connect to Nova, use SSH or PuTTY (gate.tau.ac.il):

PuTTY Configuration X
Category:
=] Session Basic options for your PuTTY session
- L.oglging Specify the destination you want to connect to
—J- Teminal .
Host Name (or IP address) Port
- Keyboard
Bell Igate.tau,ac,ill l ’22 ‘
Features Connection type:
=) Window (ORaw (O Telnet (ORlogn @SSH (O Serial
Appearance
phd) Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection ’ ‘
Colours [Defaul Setings _______|NITS
-I- Connection WinSCP temporary session
Data medial Qaua
Proxy -
Telnet Delete
Rlogin
+- SSH
Serial Close window on exit:
O Always (O Never (® Only on clean exit
About Help Open Cancel

After pressing the “Open” button, enter your username and password for authentication
(the username and password are identical to your Moodle authentication). Once connected,
you should run the command ssh nova.cs.tau.ac.il

When successfully connected to Nova, you will see a terminal similar to the following:

EP gatetau.acil - PuTTY = O X

Now you can execute shell commands with this tool. Read the section below to find out
more about shell commands.

BASIC SHELL COMMANDS

After the connection to Nova is established, you can execute shell commands. The results
will be displayed on the same terminal (If there's any).

A few useful shell commands:

>> pwd
Prints the full pathname of the current working directory.
(The pathname is relative to the root directory which is the first directory in Linux).

>> time [command]
Displays information about the execution time of “command”.
Use it to compare your programs (C vs Python) runtimes.

>> s [dir]
Lists the content of the directory dir (Both files and directories). If no parameters are given,
the result is the content of the current working directory.

>> cd [dir]

Changes the current directory to be dir. If dir is empty, the control moves to the home
directory

Use the following shortcuts:

. —This is a shortcut for the current directory.
..—This is a shortcut for the parent directory in the hierarchy.
~ —this is a shortcut for your home directory.

Examples:
cd ~/projects/git/k_means
cd../../../k_means

>> mkdir [dir]
Creates a new directory with the name dir.

>> cp [filel] [file2] ... [fileK] [dir]

Copies filel,file2,...,fileK to the directory "dir".

This following common example:

“cp mytext.txt mytext2.txt”

will copy the file “mytext.txt” into a file named “mytext2.txt”.

>>rm [filel] [file2] ... [fileK]
Removes the files filel,file2,...fileK.

>>man [command]
The man command is used to display the manual page of the command "command".
Note: you can navigate through the manual page using the arrows in the keyboard. To exit

the manual page press "g".

>> diff [file1] [file2]
Prints the difference between the two files (filel and file2)
Note: Use the man command to see the manual page of the command "diff".

>> chmod [options] [file]

Changes the permissions of [file] according to [options].
Note: When transferring executable files to Nova, you may need to “chmod 777 <file>" to
allow their execution.

THE K-MEANS CLUSTERING ALGORITHM

Given a set of N observations {xl, X9,y ey xN} , where each observation is a

d - dimensional real vector, X; € Rd, we aim at finding K clusters to group the
observations into.

Each observation is assigned to exactly one cluster and the number of clusters K is such that
K < N.
We will denote the group of clusters by {S7,S,, ... ,Sk} .

Each cluster Sj is represented by its centroid [which is a d - dimensional point.

The centroid represents the mean of the members in its cluster, hence the name K-means.
We denote the group of cluster centroidsas {{t; € R :1<j<K}.

The K-means algorithm is as follows:

1. Initialize cluster centroids {{l1, U3, ... , g} from the first K observations.
2. Repeat until [(cluster centroids do not change from previous iteration) OR (we have
completed MAX_ITER iterations)]:

a. Assign each observation X; to cluster Sj that minimizes:
2 . .
b. Update each centroid [; as follows:

]
|55

ZXPES i xp

Hj =

The input file containing the observations and the MAX_ITER parameter used in step 2 are
addressed in the section “PROGRAMS INTERFACE”.

In step 2.a. of the algorithm, the distance used to find the closest cluster’s centroid is the

squared Euclidean distance and it is defined as (for two 71 - dimensional points P, q):
n
2 __ 2
Ip—all? = > @i~)
i=1

In step 2.b. of the algorithm, |Sj| is the size of Sj)

INTERFACE

INPUT

In this assignment, both of the implementations (C and Python) will contain a command-line
argument interface.

Those arguments are K, N, d, MAX_ITER (in this order) which stand for:

e K—the number of clusters required.

e N —the number of observations in the file

o d—the dimension of each observation and initial centroids

o MAX_ITER —the maximum number of iterations of the K-means algorithm

In addition, an input file which we’ll denote as filename, will be directed to the standard
input. It will contain the d-dimensional observations (see below for a detailed explanation on
the file’s format and the standard input used to process it).

INPUT FILE FORMAT

Consider the filename. The first K lines contain the initial d-dimensional centroids separated
by commas. These lines should be used in step 1 of the algorithm.

The following N — K lines represent the remaining observations.
Each data point contains 2 decimal places (for example 1.00 or -298.77).

A filename can be generated by using “gen_file.so” as described in the “SUPPLEMENTARY
MATERIAL” section.

OUTPUT

At the end of the program, both implementations will display (printf{(...) in C and print{(...) in
Python) the computed final K-centroids, each in a separate line. Each centroid will have the
data points separated by a comma and each value will have a 2 decimal places format
(similar format as the one of the initial centroids in filename).

You should keep the order of the final centroids identical to the order you read the initial
centroids. l.e. make sure that the first line (which is your first calculated centroid) resulted
from the initial first line of filename (the first initial centroid) and so on.

An example output (assuming K=3,d = 2):

8.99,5.00
10.06,8.55
23.55,9.00

THE C IMPLEMENTATION

THE MAIN FUNCTION AND COMMAND-LINE ARGUMENTS

The main function is the entry point of any C program. Its signature should be:
int main (int argc, char* argvl[])

argc will contain the number of argumentsin argv[].

You can access the 1%t argument with argv[1] (the number of clusters K), and the 2™
argument with argv[2] (the number of observations N) and so on.

In this context, in order to transform strings to integers you can use the function atoi which
has the following signature:

int atoi (const char* nptr)

atoi is available at stdlib.h

PROCESSING STANDARD INPUT

An input to the program could be given in several ways, such as user input (like keyboard)
and files.

A file could be read directly or fed into the program’s input using the ‘<’ operator.

The stdio.h header provides a rich API to support input/output capabilities.

In it, we will focus on the following function:

int scanf (const char* format, ...)

This function reads data from the standard input stream.
For an in-depth reference please see:
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm i 71/rtref/scanf.htm

For example, consider the following program for reading a stream of lines of data points
separated by commas:

#include <stdio.h>

int main(void)

{
double n1;
char c;
while (scanf("%1f%c", &nl, &c) == 2) printf("%f\n", nl);
return 0;
}

COMPILE AND EXECUTE

As we noted, students may work in any development environment they choose. However,
the code must compile with no errors and run on Nova successfully.

To see that this is indeed the case, please upload your source code and other related files to
Nova (all the files in the same directory).

After the connection is established, set that same directory as the source code’s directory.
Then type in the following command and press enter to build your code (your source code
will be called - kmeans.c):

>>gcc -ansi -Wall -Wextra -Werror -pedantic-errors kmeans.c -1m -o
hwl

The above command will compile your program and create a binary file called hw1.
Note that the compilation flags used in the command above will be our default flags, so you
should configure your eclipse installation with these flags (more information on Moodle).

Now you can run your program by executing the following command on Nova

(assuming K=3, N =5, d =2, MAX_ITER = 100, filename = “input.txt”):

>> ./hwl 3 5 2 100 < input.txt

Note the use of the operator ‘<’ to direct the content of “input.txt” into the standard input.

Before submitting your code, make sure your code compiles with no warnings and errors on
Nova. If you encounter ones, it is your responsibility to fix them prior final submission.

THE PYTHON IMPLEMENTATION

COMMAND-LINE ARGUMENTS

The Python standard library has a recommended module for command-line parsing.
It is the one taught in class, argparse and it has a rich documentation:
https://docs.python.org/3.8/howto/argparse.html

All the command-line arguments defined should be positional ones and have the
appropriate typing.

PROCESSING STANDARD INPUT

There are several ways to access the program’s input in Python. We focus on the built-in
function (https://docs.python.org/3/library/functions.html#input):
input ([prompt])

If the optional prompt argument is present, it is written to standard output without a
trailing newline.

The function then reads a line from input, converts it to a string (stripping a trailing newline),
and returns that. When EOF is read, EOFError is raised.

For example, consider the following program for reading a stream of lines of data points
separated by commas:

while True:
try:
for num in input().split(','):
print(float(num))
except EOFError:
break
exit(0)

EXECUTE

To execute your Python source code (will be called kmeans.py) on Nova use the following
command from the same directory the source code is at
(assuming K=3, N =5, d =2, MAX_ITER = 100, filename = “input.txt”):

>>python3.8.5 kmeans.py 3 5 2 100 < input.txt

This command uses the Python 3.8.5 version to run your code, allowing you to use all the
features of that version. Ensure it runs on Nova with no warning/error messages.

TIME MEASUREMENTS

Your code is graded for performance as well.

You should keep that in mind and try to make your code (C and Python) as efficient as
possible.

That being said, you’ll notice that the Python’s runtime becomes increasingly slow as the
number of observations, clusters and dimensions grow.

The following configuration (if it takes too long reduce it as necessary):

K =15, N = 50,000, d = 15, MAX_ITER = 5 and the appropriate input file (‘filename’),
would result in a runtime difference in the orders of magnitude, favoring the C over the
Python one.

To measure the runtime (not by coding), see the time command in the “BASIC SHELL
COMMANDS” subsection.

There is no requirement to output your runtimes and the expected output should remain as
defined in the “OUTPUT” subsection.

SUPPLEMENTARY MATERIAL

TESTER FILE

Attached to this assignment is an executable file “km.so”. Copy it to Nova and give it
execution permissions (see the command chmod above).

Its execution APl is:

>>python -m km.so K N d MAX_ITER filename file to_compare

Where ‘file_to_compare’ would be your program’s output in a file.

Note that unlike your API, the input file (‘filename’ and ‘file_to_compare’) are supplied as a
command line argument and not directed to the standard input.

You can use the tester to check your output using the following procedure
(assuming K=3, N =5, d =2, MAX_ITER = 100, filename = “input.txt”):

1. Execute your Python code and output the result into a file (in this case named “y”)
using this command:
>>python3.8.5 kmeans.py 3 5 2 100 < input.txt > y

2. Execute your C code and output the result into a file (in this case named “z”) using
this command:
>>./hwl 3 5 2 100 < input.txt > z

3. Use the following command to check your Python’s output (we allow certain
Frobenius Norm difference between your centroid and the testers):
>>python -m km.so 3 5 2 100 input.txt y
The same can be done with your C output by:
>> python -m km.so 3 5 2 100 input.txt z

Important note: compare your results to the tester ones with converging sets, meaning
those that do not reach the MAX_ITER number of iterations.

INPUT FILE GENERATOR

In order to get the initial clusters and the observations for the K-means algorithm in this
assignment, an input file is required. It is the file referred to the program’s standard input
and was denoted as ‘filename’.

The supplied executable file “gen_file.so” serves as a generator for this file. Copy it to Nova
and give it the permissions in the same manner that was explained in the previous
subsection.

This file takes 2 command-line arguments N, d (in this order and with the same meaning as
explained before).

In order to generate an input file named “input_5_2.txt” use the following command
(assuming N =5,d = 2):

>>python -m gen_file.so 5 2 > input_5_ 2.txt

ASSUMPTIONS AND REQUIREMENTS

Note that the following list applies to both programs in this assignment:

e You may assume the input file is in the correct format and that it is supplied.

e You may assume that all the command line arguments that are supplied are in the
correct syntax (integer for example), but you need to make sure that all of them are
supplied and that they make sense.

e |nthe Cimplementation, you may use assert to exit on any error in allocating
memory.

e You may assume that any cluster will have at least one associated observation.

e You may not import external includes (in C) or modules (in Python) that weren’t
mentioned in this document.

e Hold the requirements as presented throughout this document (such as the output
format of your programs, the K-means logic, the programs interface, Nova execution
etc.).

e Any further questions should be answered by using the supplied tester and
observing its behavior.

SUBMISSION

You may submit this assignment alone or in pairs. Please submit a zip file named
id1_id2_hw1.zip replacing id1 and id1 with the actual 9-digit ID of both partners. Only a
single partner should submit the assignment! If you submit alone, name it id_hwa1.zip.

The zipped file must contain the following files (at the root, no folders, the names are all
lowercase):

e kmeans.c— Your source code for the C program.
e kmeans.py — Your source code for the Python program.

Submit only these files!

MAC users: create (or check) your zip files under Linux, as otherwise hidden auxiliary files
are automatically added and will reduce your grade. To zip directly from Nova, you can
consult the command >> man zip for more information.

REMARKS

e Please post questions you have about this assignment in the assignment forum (it
will be opened later on).

e Late submissions are not acceptable unless approved by the TA.

e Borrowing from others' work is unacceptable and bears severe consequences.

GOOD LUCK

