

Submission date: The assignment is due in two weeks.
Follow the submission instructions described in class and on the web site.
Implement an application called fibproc.

The fibproc utility computes the N-th Fibonacci number by spawning new processes to calculate the N-1 and the N-2 values of the series.
Usage: fibproc <N> <log path> <timeout>

The application receives three parameters on its command line.
1. N – the Fibonacci number we wish to compute

2. Log path – A path to a log file

3. Timeout – A timeout value to be used when waiting for a semaphore.

Computing the N-th Fibonacci number:
The computation of the N-th Fibonacci number is as follows:

First, attempt to spawn two processes in order to compute the N-1 and N-2 numbers of the series. However, a global restriction exists that no more than 10 processes will be alive at any single moment. You should use a semaphore to impose this restriction. Use the timeout provided on the command line as the wait time for the semaphore.

If spawning a process fails compute the Fibonacci number using an in-process recursive function.

Processes should not be spawned for 0 and 1 (the recursion base).

The computed value will be returned as return value from the process and will be retrieved by its caller using the GetExitCodeProcess function. A process will return a negative value if for some reason it was unable to compute the Fibonacci number. In such case its caller will fall back on the in-process computation.
Spawning a new process:
Use the CreateProcess function we saw in class to create a new process. To retrieve the application name use GetModuleFileName.
Output:
As mentioned above each process will return the computed value as its return value.

In addition it will write to a log file a string containing the following information:
1. Time of writing – This is the return value of a call to GetTickCount
2. The number of the Fibonacci number that was calculated (N)

3. The value of the above number (Fn)

4. Number of process that were spawned for the computation (0-2)

The output will be formatted in the following way:
"%d\t%d\t%d\t%d\r\n", with parameter supplied in the order described above.

Writing to the log file:
When writing to the log file we need to make sure that no two processes attempt to write to the file simultaneously. We will use a Mutex to ensure that.

Before attempting to write to the file a process should acquire the Mutex and release it once it finished the write.
Important:

When waiting for the on a child process to terminate, or while waiting to write to the log file use a very large (but not infinite) timeout (e.g. 1 minute).
Operating Systems

Assignment #2

PAGE
1

