

Submission date: The assignment is due in two weeks.
8.7 for the Tue. group; 10.7 for the Thu. groups.
Follow the submission instructions described in class and on the web site.
Building on the previous assignment we will create a producer/consumer applications using a shared queue. Unlike the previous assignment we will implement two different queues and the actual usage will be postponed to run-time using DLLs.
In addition we will implement a simple progress bar using another thread.
What to implement:

Applications

Implement two applications as in the previous assignment.
A producer reads non-negative integers from the user and pushes onto a shared queue. The consumer reads those integers from the queue, print them to the console and sleep for the amount of time specified by the value read. The process continues until 0 is encountered.
The code for the consumer is provided on the web site so you'll only have to implement the producer.
The exact queue to be used will be provided as a command line parameter, thus the queue library should be linked at run time (the progress library is load-time linking).
Queues
You should implement two different queues: a FIFO and a LIFO queues.

Each queue will be implemented in a separate DLL, but both will adhere to a single interface, meaning they should implement the same functions and use the same sructures.
The queues, of course, should be synchronized. The synchronizations should be implemented by the queue functions and not rely on external synchronizations.
The interface:

BOOL CreateQueue(SHARED_QUEUE*);

BOOL DeleteQueue(SHARED_QUEUE*);

BOOL PushElement(SHARED_QUEUE*, DWORD);

BOOL PopElement(SHARED_QUEUE*, DWORD*);
Don't forget to add __declspec(dllexport) and __declspec(dllimport) where applicable.  Also, don't forget to use extern "C"
Progress
Print "progress bar" while waiting on queue operation.
· Reader prints stars ('*') while waiting for elements in queue (not while in sleep).
· Writer prints stars ('*') while waiting for free space.
The progress bar is implemented as a separate DLL linked at load-time. It implements two functions: StartProgress() and StopProgress().
StartProgress() starts a new thred that will output '*' every 1 second.  Use an unnamed Event object for the timeout.
StopProgress() signals the event object, thus terminating the progress thread. It hen wait for the thread's termination and performs cleanup (close handles).
The thread's function should wait on the event for 1 second. If the timeout expired it prints a '*' and continues to wait on the event. If the event was signaled it prints '\n' (only if stars where printed)  and teminate.
What you should submit:

You should submit a single solution called hw4 containing five projects (fifo_queue, lifo_queue, progress, consumer, producer). If you chose to implement shared queue code using another DLL add that project as well.

The .sln and .vcproj files should all reside in the code directory.

In addition you should submit all your .cpp and .h files. Do not make changes to the auto generated files and submit only a single copy of those. These files should also reside in the code directory.
You should place all your .exe, .dll and .lib files in the bin directory.

You do not have to submit an example run with your hardcopy.
Operating Systems





Assignment #4




















PAGE  
2

