

Submission date: The assignment on Sunday 20.7

Follow the submission instructions described in class and on the web site.
Implement a "Fortune Teller" server application and a client that connects to it.
The server (server.exe) waits for clients applications and sends them "words of wisdom" which it sores on files. The client simply connects to the server, receives the text and prints it on the console. It then exits.
What to implement:

· server.exe <directory> <port>

The server accepts two parameters on its command line:

1. directory – is a path to the folder where the files containing the word of wisdom reside. You may assume the path ends with a trailing backslash ('\').
In the directory there will be 10 files named 0.txt, 1.txt ... 0.txt. Each of these files contains ASCII text and is at most 256 characters in length. You may choose the text (try to keep it interesting).
2. port – the port the server binds to.

The server waits for a client connection; once a client connects it randomly chooses a file from the directory and sends its content to the client. It will then terminate the connection and will wait for the next client.
If you use 127.0.0.1 as the address your server binds to it will not be able to communicate with the outside world. Only applications running on the same machine will be able to communicate.

In order to communicate across the network you will need to obtain the IP address of your computer programmatically. Hard-coding it will not work as testing is not done on your machine. Below is a snippet of code that let's you do just that.

First, you need to obtain your host name using gethostname then you will get the IP address using gethostbyname.

// Get the local host name
char hostname[MAX_PATH];

gethostname(hostname, sizeof(hostname));

// Populate the host entry structure
struct hostent* host = gethostbyname(hostname);
// prepare address structure to bind listen socket

sockaddr_in service;

service.sin_family = ...;

service.sin_addr.s_addr = *((ULONG*)host->h_addr_list[0]);

service.sin_port = htons(...);
client.exe

The client accepts two parameters on its command line – the server's IP and port. It will attempt to connect to the server and receive the text. It will print the text on the console and exit.
Tips:

Use rand_s to generate random numbers.
The rand_s function requires that constant _CRT_RAND_S be defined prior to the inclusion statement. However, it should be defined after the inclusion of the precompiled header. For example:

#include "stdafx.h"

// Remembering to define _CRT_RAND_S prior to inclusion statement.

#define _CRT_RAND_S

#include <windows.h>
#include <assert.h>

· Pay attention to the fact that the data is ASCII and not Unicode.
· In order to convert wide characters to ASCII use WideCharToMultiByte
Testing:

First, make sure that the applications work on your machine before attempting to actually test them across the network. Once you are convinced everything is fine you can test you application using more than one computer (e.g. two PCs in the lab)
You can test your server even before implementing the client by using your browser as your client. Once you have your server up and running direct your browser to

http://<ip address>:<port>.

What you should submit:

Submit a single solution (hw5) containing two projects (client and server).

Your code directory should contain a hierarchical layout of your project. The .sln file should be in the code directory, underneath two subdirectories for the projects, each containing the .vcproj file and the source code.
The bin directory will contain the two executables.

You do not have to submit an example run with your hardcopy.
Operating Systems

Assignment #5

PAGE
2

