
Operating SystemsOperating Systems

Lesson 8

PlanPlan

� Threads

� Threads in Windows

� Thread Usage

� Thread Synchronization

� Thread Beeper sample

� HW #4

Processes and Threads

� Process

The virtual address space and control
information necessary for the execution of a
set of thread objects.

� Thread

An entity within a process that Windows
schedules for execution.

ThreadsThreads

� “light-weight” processes

� Threads in a process share address space

◦ Code

◦ Heap

� Have private Program Counter (PC) and
stack

� Execution Scheduled by OS

◦ Preemptive multitasking

Threads in WindowsThreads in Windows

� CreateThread (…, ThreadFunction,…)

� An object =>has a handle

� A process always has “main thread”
associated with it

◦ Handle returned by CreateProcess

� Access to shared process resources has
to be synchronized among threads

Thread UsageThread Usage

� Multiple CPUs=>parallel computation

� Asynchronous device communication

◦Wait for slow device operation in one thread
while continuing computation in another

� Asynchronous user interaction

◦ Perform computation in one thread while
reacting on user input in another thread

Thread SynchronizationThread Synchronization

� Thread had finished=>thread in signaled
state.

� Mutex/Semaphore/Event
◦ Unnamed objects are allowed (NULL name)

◦ Threads access an object through shared
handle

� New synchronization object
◦ Critical section

◦ For synchronization between threads of the
same process only (Similar to mutex)

Threads beeper sampleThreads beeper sample

HW #4HW #4

� Based on previous reader/writer assignment

� Create 3 DLLs
◦ fifo_queue.dll

◦ lifo_queue.dll

◦ Progress.dll

� Usage
◦ Reader.exe fifo_queue.dll

◦ Writer.exe fifo_queue.dll

� Check references for HW#4 on the
course’s homepage

FIFO/LIFO queue implementations FIFO/LIFO queue implementations

in DLLsin DLLs
� Implement MMF-based fifo and lifo
queues (including synchronization)

� Reader/Writer pair load appropriate dll
according to command line (run-time
binding)

� Both DLL’s have same interfaces
typedef BOOL (*pfnCreateQueue)(SHARED_QUEUE*);

typedef BOOL (*pfnDeleteQueue)(SHARED_QUEUE*);

typedef BOOL (*pfnPushElement)(SHARED_QUEUE*,DWORD);

typedef BOOL (*pfnPopElement)(SHARED_QUEUE*,DWORD*);

SHARED_QUEUE SHARED_QUEUE
typedef struct

{

DWORD m_dwCount;

DWORD m_dwHead;

DWORD m_dwTail;

} SHARED_QUEUE_HEADER;

typedef struct

{

SHARED_QUEUE_HEADER* m_pHeader;

DWORD* m_pQueue;

HANDLE m_hMutex;

HANDLE m_hReadSem;

HANDLE m_hWriteSem;

HANDLE m_hMapFile;

BYTE* m_pBuffer;

} SHARED_QUEUE;

Progress DLL Progress DLL

� Progress.dll is used in reader and writer
through compile-time binding (using *.lib)

� Implements“progress indicator”

� Interfaces

◦ StartProgress() start printing stars “*” on the
console window every second

◦ StopProgress() stop printing stars and print
“\n” if any star was printed

� First star is printed after 1 second

HW#4 concept of operationHW#4 concept of operation

� Same input/output as previous assignment
◦Writer accept integers

◦ Reader print integers at each new line and
sleep for duration of integer value

◦ Reader and Writer exit if zero received

� New feature
◦ Print progress while waiting on queue
operation
� Reader prints stars while waiting for elements in
queue (not while in sleep)

� Writer prints stars while waiting for free space

Reader Code (see homepage)Reader Code (see homepage)
typedef struct

{

DWORD m_dwCount;

DWORD m_dwHead;

DWORD m_dwTail;

} SHARED_QUEUE_HEADER;

typedef struct

{

SHARED_QUEUE_HEADER* m_pHeader;

DWORD* m_pQueue;

HANDLE m_hMutex;

HANDLE m_hReadSem;

HANDLE m_hWriteSem;

HANDLE m_hMapFile;

BYTE* m_pBuffer;

} SHARED_QUEUE;

typedef BOOL (*pfnCreateQueue)(SHARED_QUEUE*);

typedef BOOL (*pfnDeleteQueue)(SHARED_QUEUE*);

typedef BOOL (*pfnPushElement)(SHARED_QUEUE*,DWORD);

typedef BOOL (*pfnPopElement)(SHARED_QUEUE*,DWORD*);

Readers CodeReaders Code--ConCon’’tt
typedef struct

{

pfnCreateQueue CreateQueue;

pfnDeleteQueue DeleteQueue;

pfnPushElement PushElement;

pfnPopElement PopElement;

HMODULE m_hDLL;

} QUEUE_LIB;

BOOL LoadQueueLibrary(QUEUE_LIB* queue_lib,LPCTSTR dllName)

{

...

}

//declarations for compile-time DLL binding

BOOL __declspec(dllimport) StartProgress();

BOOL __declspec(dllimport) StopProgress();

Readers CodeReaders Code--MainMain
int _tmain(int argc, _TCHAR* argv[])

{

assert(argc==2);

QUEUE_LIB queue_lib;

LoadQueueLibrary(&queue_lib,argv[1]);

SHARED_QUEUE queue;

queue_lib.CreateQueue(&queue);

do

{

DWORD dwElem;

StartProgress();//start showning "star progress“

queue_lib.PopElement(&queue,&dwElem);

StopProgress(); //end "star progress“

_tprintf(_T("%d\n"),dwElem);

::Sleep(dwElem);

if(!dwElem)

break;

}while(1);

queue_lib.DeleteQueue(&queue);

FreeLibrary(queue_lib.m_hDLL);

return 0;

}

HW#4 HintsHW#4 Hints

� FIFO/LIFO DLL’s still have shared code

� Can put in shared mmf_queue.dll
(compile-time binding to FIFO/LIFO
DLL’’s)- Optional

� Reader/Writer have shared
code/declarations

◦ Shared *.h files with DLL’s

◦ Move some code to progress.dll (optional)

