Operating Systems

Lesson 8



Plan

* Threads
* Threads in Windows

* Thread Usage

* Thread Synchronization

* Thread Beeper sample
* HW #4



Processes and Threads

e Process

The virtual address space and control
information necessary for the execution of a
set of thread objects.

e Thread

An entity within a process that Windows
schedules for execution.



Threads

* “light-weight” processes
* Threads in a process share address space

> Code
> Heap

* Have private Program Counter (PC) and
stack

» Execution Scheduled by OS

> Preemptive multitasking



Threads in Windows

e CreateThread (..., ThreadFunction,...)
* An object =>has a handle

* A process always has “main thread”
associated with it
> Handle returned by CreateProcess

* Access to shared process resources has
to be synchronized among threads



Thread Usage

» Multiple CPUs=>parallel computation
* Asynchronous device communication

> Wait for slow device operation in one thread
while continuing computation in another

* Asynchronous user interaction

> Perform computation in one thread while
reacting on user input in another thread



Thread Synchronization

* Thread had finished=>thread in signaled
state.

* Mutex/Semaphore/Event
> Unnamed objects are allowed (NULL name)

> Threads access an object through shared
handle

* New synchronization object
> Critical section

> For synchronization between threads of the
same process only (Similar to mutex)



Threads beeper sample



HW #4

» Based on previous reader/writer assighment
e Create 3 DLLs

> fifo_queue.dll
> lifo_queue.dIl
° Progress.dll
» Usage
> Reader.exe fifo_queue.dll
> Writer.exe fifo _queue.dll

e Check references for HW#4 on the
course’s homepage



FIFO/LIFO queue implementations

in DLLs

* Implement MMF-based fifo and lifo
queues (including synchronization)

» Reader/Writer pair load appropriate dll
according to command line (run-time

binding)
e Both DLL’s have same interfaces

typedef BOOL (*pfnCreateQueue)(SHARED _QUEUE*);
typedef BOOL (*pfnDeleteQueue)(SHARED _QUEUE*);
typedef BOOL (*pfnPushElement)(SHARED QUEUE*, DWORD);
typedef BOOL (*pfnPopElement)(SHARED QUEUE*,DWORD¥);



SHARED QUEUE

typedef struct

{
DWORD m_dwCount;
DWORD m_dwHead;
DWORD m_dwTail;

} SHARED_QUEUE_HEADER;

typedef struct
{
SHARED QUEUE_HEADER*
DWORD*
HANDLE
HANDLE
HANDLE
HANDLE
BYTE*

} SHARED_QUEUE;

m_pHeader;
m_pQueue;
m_hMutex;
m_hReadSem;
m_hWriteSem;
m_hMapFile;
m_pBuffer;



Progress DLL

* Progress.dll is used in reader and writer
through compile-time binding (using *.lib)

* Implements“progress indicator”

* Interfaces

o StartProgress() start printing stars “*”’ on the
console window every second

> StopProgress() stop printing stars and print
“\n” if any star was printed

e First star is printed after | second



HVW#4 concept of operation

* Same input/output as previous assignment
> Writer accept integers

o Reader print integers at each new line and
sleep for duration of integer value

o Reader and Writer exit if zero received

e New feature

° Print progress while waiting on queue
operation

Reader prints stars while waiting for elements in
queue (not while in sleep)

Writer prints stars while waiting for free space



Reader Code (see homepage)

typedef struct

{
DWORD m_dwCount;
DWORD m_dwHead;
DWORD m _dwTail;

} SHARED QUEUE HEADER;

typedef struct

{
SHARED QUEUE_HEADER* m_pHeader;

DWORD* m_pQueue;

HANDLE m_hMutex;
HANDLE m_hReadSem;
HANDLE m_hWriteSem;
HANDLE m_hMapFile;
BYTE* m_pBuffer;

} SHARED QUEUE;

typedef BOOL (*pfnCreateQueue) (SHARED QUEUE*) ;
typedef BOOL (*pfnDeleteQueue) (SHARED QUEUE*) ;
typedef BOOL (*pfnPushElement) (SHARED QUEUE* 6 DWORD) ;
typedef BOOL (*pfnPopElement) (SHARED QUEUE*,DWORD¥) ;



Readers Code-Con’t

typedef struct

{
pfnCreateQueue CreateQueue;
pfnDeleteQueue DeleteQueue;
pfnPushElement PushElement;
pfnPopElement PopElement;
HMODULE m_hDLL;

} QUEUE_LIB;

BOOL LoadQueueLibrary (QUEUE LIB* queue_ lib,LPCTSTR dllName)
{

//declarations for compile-time DLL binding
BOOL _ declspec(dllimport) StartProgress();
BOOL _ declspec(dllimport) StopProgress()



Readers Code-Main

int _tmain(int argc, _TCHAR* argv([])

{
assert (argc==2) ;
QUEUE_LIB queue_lib;
LoadQueuelibrary (&queue_ lib,argv[1l]);
SHARED QUEUE queue;
queue_lib.CreateQueue (&queue) ;

do
{
DWORD dwElem;
StartProgress () ;//start showning "star progress™
queue_lib.PopElement (&queue, &dwElem) ;
StopProgress(); //end "star progress™“
_tprintf(_T("%d\n") ,dwElem) ;
::Sleep (dwElem) ;
if('dwElem)
break;
}while (1) ;

queue_lib.DeleteQueue (&queue) ;
Freelibrary(queue_ lib.m hDLL) ;

return 0;



HW#4 Hints

e FIFO/LIFO DLL’s still have shared code

e Can put in shared mmf_queue.dIl
(compile-time binding to FIFO/LIFO
DLL”s)- Optional

e Reader/Writer have shared
code/declarations
o Shared *.h files with DLL’s
> Move some code to progress.dll (optional)



