## Overview

- Images
- What is an image?
- How are images displayed?
- Color models
- How do we perceive colors?
- How can we describe and represent colors?


## What is an image?

- An image is a $2 D$ rectilinear array of pixels


Continuous image


Digital Image

Image display

- Re-create continuous function from samples

Example: cathode ray tube


## קור0 גרפיקה ממוחשבת

2008 ממoטר ב'

## Raster Graphics



## What is an image?

- An image is a 2D rectilinear array of pixels


Continuous image


Digital Image

## Image Acquisition

- Pixels are samples from a continuous function
- Photoreceptors in eye
- CCD cells in digital camera
- Rays in virtual camera



## Pixel geometry



## Liquid Crystal Display (LCD)



Display Hardware

- Video display devices
- Cathode Ray Tube (CRT)
- Liquid Crystal Display (LCD)
- Plasma panels
- Thin-film electroluminescent displays
- Light-emitting diodes (LED)
- Hard-copy devices
- Ink-jet printer
- Laser printer
- Film recorder
- Electrostatic printer
- Pen plotter


Refresh rate is usually $30-75 \mathrm{~Hz}$

Frame Buffer


Frame Buffer
Figure 1.2 from FvDFH

## Color Frame Buffer



Electromagnetic Spectrum

- The color of light is characterized by ...
- Hue = dominant frequency (highest peak)
- Saturation $=$ excitation purity (ratio of highest to rest)
- Lightness = luminance (area under curve)


White Ligh

## 3D Color Spaces

- Three types of cones suggests color is a 3D quantity. How to define 3D color space?


Color Perception


## RGB Color Model



| $\mathbf{R}$ | G | B | Color |
| :--- | :--- | :--- | :--- |
| 0.0 | 0.0 | 0.0 | Black |
| 1.0 | 0.0 | 0.0 | Red |
| 0.0 | 1.0 | 0.0 | Green |
| 0.0 | 0.0 | 1.0 | Blue |
| 1.0 | 1.0 | 0.0 | Yellow |
| 1.0 | 0.0 | 1.0 | Magenta |
| 0.0 | 1.0 | 1.0 | Cyan |
| 1.0 | 1.0 | 1.0 | White |
| 0.5 | 0.0 | 0.0 |  |
| 1.0 | 0.5 | 0.5 | $\square$ |
| 1.0 | 0.5 | 0.0 | $\square$ |
| 0.5 | 0.3 | 0.1 | $\square$ |

## Color Models

- Linear (RGB, CMYK)
- Artistic View (Munsell, HSV, HLS)
- Standard (CIE-XYZ)
- Perceptual (Luv, Lab)
- Opponent (YIQ,YUV) - used in TV


## המשך RASTER DISPLAY

## CIE 193I Color Space



- Experiments produced three functions: $r(\lambda), g(\lambda), b(\lambda)$
- Functions were normalized to have a constant area beneath them
- Therefore, RGB tristimulus values for a color $I(\lambda)$ would be:

$$
\begin{aligned}
& R=\int_{0}^{\infty} I(\lambda) \bar{F}(\lambda) d \lambda \\
& G=\int_{0}^{\infty} I(\lambda) \bar{g}(\lambda) d \lambda \\
& B=\int_{0}^{\infty} I(\lambda) \bar{b}(\lambda) d \lambda
\end{aligned}
$$

## CIE 193I Color Space

- CIE XYX is based on experiments done by W. David Wright and John Guild in the 1920's
- It is based on direct measurements of human visual perception



## CIE-XYZ

- Transforming the triangle to $(0,0),(0, I),(I, 0)$ is a linear transformation



## CIE Chromaticity Diagram



Figures 15.8-10 from H\&B

## CMY Color Model



| $\mathbf{C}$ | $\mathbf{M}$ | $\mathbf{Y}$ | Color |  |
| :--- | :--- | :--- | :--- | :---: |
| 0.0 | 0.0 | 0.0 | White |  |
| 1.0 | 0.0 | 0.0 | Cyan |  |
| 0.0 | 1.0 | 0.0 | Magenta |  |
| 0.0 | 0.0 | 1.0 | Yellow |  |
| 1.0 | 1.0 | 0.0 | Blue |  |
| 1.0 | 0.0 | 1.0 | Green |  |
| 0.0 | 1.0 | 1.0 | Red |  |
| 1.0 | 1.0 | 1.0 | Black |  |
| 0.5 | 0.0 | 0.0 | $\square$ |  |
| 1.0 | 0.5 | 0.5 | $\square$ |  |
| 1.0 | 0.5 | 0.0 | $\square$ |  |

Colors are subtractive

## RGB Color Gamut

Color gamut for a typical RGB computer monitor


## HSV/HSB Color Model

- RGB is not suited to describing colors
- How do we describe colors?

Hue
Saturation
Brightness


CMY Color Cube


Figure 15.14 from H\&B

## Distances between colors

- Distances are not linear in any color space.
- In perceptual color space distances are more suitable for our conception.
- Measuring color differences between pixels is more useful in perceptual color spaces


HSV/HSB Color Model

HSV = Hue Saturation Value

Saturation Scale


Brightness Scale



[^0]- Images
- Pixels are samples
- Frame buffers
- Display hardware
- Devices have limited resolution
- Color models
- Tristimulus theory of color
- CIE Chromacity diagram
- Different color models for different devices, uses, etc.
- Modern color models take into account better how we perceive colors and the differences between them


[^0]:    The End

