What is an image?

• An image is a discrete array of samples representing a continuous 2D function

קורס גרפיקה ממוחשבת 2008 סמסטר ב'

חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

Spectral Analysis

- So our image (function f(x,y)) describes how the signal changes over "time" (x and y axes)
- Aliasing occurs when we use too few samples (what is enough?)
- The more an image changes, the more we need to sample it.
- How do we measure how fast a signal changes? • Frequencies

Aliasing

What happens when we use too few samples?
 Aliasing

Fourier

- Joseph Fourier discovered in 1822 that
 - Any periodic function can be expressed as the sum of sines and/or cosines if different frequencies (Fourier Series)
 - Even functions that are not periodic can be expressed as the integral of sines and/or cosines (Fourier Transform)
 - Initial application was in heat diffusion

Fourier Transform (ID)

• Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi x u} dx$$

• Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{+i2\pi u x} du$$

Pixel operations

- Add random noise
- Add luminance
- Add contrast
- Add saturation
- Filtering
 - Blur
 - Detect edges
 - Sharpen
- Emboss
- Median

Image Processing

- Quantization
- Uniform Quantization
- Floyd-Steinberg dither
- Warping
 - Scale
 - Rotate
 - Warps
- Combining
- Composite
 - Morph

Sampling Theorem

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

C

Compute mean luminance L for all pixels
 Iuminance = 0.30*r + 0.59*g + 0.11*b

Scale deviation from L for each pixel component
 Must clamp to range (e.g., 0 to 1)

More Contrast

Adjusting Contrast

Linear Filtering (Spatial Domain)

Convolution

 Each output pixel is a linear combination of input pixels in neighborhood with weights prescribed by a filter

Image Processing

Quantization

- Uniform Quantization
- Floyd-Steinberg dither
- Warping
 - Scale
 - Rotate
 - Warps
- Combining
- Composite
- Morph

More on blur (lowpass filters)

 We can either take a uniform 	[1/9	1/9	16
kernel (mean filter)	1/9	1/9	1/9
	1/9	1/9	1/9]

- Or a Gaussian kernel
- A Gaussian kernel tends to provide gentler smoothing and preserve edges better

Sharpen

 $\begin{bmatrix} 1 & 2 & 1 \\ 16 & 16 & 16 \\ 2 & 4 & 2 \\ 16 & 4 & 2 \\ 16 & 2 & 16 \\ 1 & 2 & 16 \\ 16 & 16 \end{bmatrix}$

· Sum detected edges with original image

Original

Edge Detection

· Convolve with a filter that finds differences between neighbor pixels

Original

What do you think happens in the frequency domain?

Emboss

Non-linear filtering

- Reduce intensity resolution
 - · Frame buffers have limited number of bits per pixel
 - Physical devices have limited dynamic range

Image Processing

- Quantization
 - Uniform Ouantization
- Floyd-Steinberg dither
- Warping
 - Scale
 - Rotate
 - Warps
- Combining
- Composite
- Morph

• Images with decreasing bits per pixel:

4 bits

l bit

- Distribute errors among pixels Exploit spatial integration in our eye
 - Display greater range of perceptible intensities

(I bit)

Quantization

Dither (1 bit)

- Dithering
 - Random dither
 - Ordered dither
 - Error diffusion dither
- Halftoning
 - Classical halftoning

Basic idea: organize successive integers such that the average distance between two successive numbers in the map is as large as possible

Ordered Dither

Dither (I bit)

Original (8 bits)

Classical halftoning

Figure 14.37 from H&B

Classical Halftoning

From New York Times, 9/21/99

Image Processing

- Quantization
- Warping
- Scale
- Rotate
- Warps
- Combining
- Composite
- Morph

Figure 14.37 from H&B

Source image

Destination image

Artifacts due to limited temporal resolution

Strobing
 Flickering

Antialiasing

- Sample at higher rate
 - Not always possible
 - Doesn't always solve problem
- Pre-filter to form bandlimited signal
 - $^{\circ}$ Form bandlimited function (low-pass filter)
 - Trades aliasing for blurring

Reconstructed Function

Bandlimited Function

Image Resampling

• For isotropic Triangle and Gaussian filters, k(ix,iy) is a function of d and w

How do we resample?

int iu = round(u);

- Point sampling

 Simple but causes aliasing
- Triangle and Gaussian
 - Algorithm as we saw earlier

(u,v)	f (ix,iy)
Source image	Destination image

Image Warping	(in General)
 Alternative (forward) 	
<pre>Warp(src, dst) { for (int iu = 0; iu < umax; i for (int iv = 0; iv < vmax; float x = f_x(iu,iv); float y = f_y(iu,iv); float w ≈ 1 / scale(x, y) Splat(src(iu,iv), x, y, w } }</pre>	u++) { iv++) { ;); weighting ???
}	Destination image

That's it for today

- Next time?
 - $^{\circ}$ Finishing corners on image processing
- Transformations and Projections
- Rendering