
5/21/2008

1

קורס גרפיקה ממוחשבת
'סמסטר ב 2008

אור-ודניאל כהן פנקהאוסר טומס, דוראנדחלק מהשקפים מעובדים משקפים של פרדו 1

Image Processing

What is an image?

 An image is a discrete array of samples

representing a continuous 2D function

2
Continuous function Discrete samples

Converting to digital form

 Convert continuous sensed data into

digital form

3

0 50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
m

p
lit

u
d
e

Sampling

Quantization

Sampling and Reconstruction

Sampling

Reconstruction

Sampling and Reconstruction

Figure 19.9 FvDFH

Sampling Theory

 How many samples are required to represent a

given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

5/21/2008

2

Aliasing

 What happens when we use too few

samples?

◦ Aliasing

Figure 14.17 FvDFH

Spectral Analysis

 So our image (function f(x,y)) describes how

the signal changes over “time” (x and y axes)

 Aliasing occurs when we use too few samples

(what is enough?)

 The more an image changes, the more we need

to sample it.

 How do we measure how fast a signal changes?

◦ Frequencies

8

Spectral Analysis

 Spatial domain:

◦ Function: f(x)

◦ Filtering: convolution

 Frequency domain:

◦ Function: F(u)

◦ Filtering: multiplication

Any signal can be written as a

sum of periodic functions.

Fourier

 Joseph Fourier discovered in 1822 that

◦ Any periodic function can be expressed as the

sum of sines and/or cosines if different

frequencies (Fourier Series)

◦ Even functions that are not periodic can be

expressed as the integral of sines and/or

cosines (Fourier Transform)

◦ Initial application was in heat diffusion

10

Fourier Transform (1D)

Figure 2.6 Wolberg

Fourier Transform (1D)






 dxexfuF xui 2)()(






 dueuFxf uxi 2)()(

 Fourier transform:

 Inverse Fourier transform:

5/21/2008

3

Sampling Theorem

 A signal can be reconstructed from its samples,

if the original signal has no frequencies

above 1/2 the sampling frequency - Shannon

 The minimum sampling rate for bandlimited

function is called “Nyquist rate”

A signal is bandlimited if its

highest frequency is bounded.

The frequency is called the bandwidth.

Image Processing

 Pixel operations

◦ Add random noise

◦ Add luminance

◦ Add contrast

◦ Add saturation

 Filtering

◦ Blur

◦ Detect edges

◦ Sharpen

◦ Emboss

◦ Median

 Quantization

◦ Uniform Quantization

◦ Floyd-Steinberg dither

 Warping

◦ Scale

◦ Rotate

◦ Warps

 Combining

◦ Composite

◦ Morph

Adjusting Brightness

 Simply scale pixel components

◦ Must clamp to range (e.g., 0 to 1)

Original Brighter

Adjusting Contrast

 Compute mean luminance L for all pixels

◦ luminance = 0.30*r + 0.59*g + 0.11*b

 Scale deviation from L for each pixel component

◦ Must clamp to range (e.g., 0 to 1)

Original More Contrast

L

Image Processing

 Pixel operations

◦ Add random noise

◦ Add luminance

◦ Add contrast

◦ Add saturation

 Filtering

◦ Blur

◦ Detect edges

◦ Sharpen

◦ Emboss

◦ Median

 Quantization

◦ Uniform Quantization

◦ Floyd-Steinberg dither

 Warping

◦ Scale

◦ Rotate

◦ Warps

 Combining

◦ Composite

◦ Morph

Linear Filtering (Spatial Domain)

 Convolution

◦ Each output pixel is a linear combination of input pixels in

neighborhood with weights prescribed by a filter

18

Filter

=

5/21/2008

4

Adjust Blurriness
 Convolve with a filter whose entries sum to one

◦ Each pixel becomes a weighted average of its neighbors

Original Blur



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

Filter =

What do you think happens in the frequency domain?

More on blur (lowpass filters)

 We can either take a uniform

kernel (mean filter)

 Or a Gaussian kernel

 A Gaussian kernel tends to provide

gentler smoothing and preserve

edges better

20

1 1 1
9 9 9

1 1 1
9 9 9

1 1 1
9 9 9

 
 
 
 
 
  



















16
1

16
2

16
1

16
2

16
4

16
2

16
1

16
2

16
1

Edge Detection

 Convolve with a filter that finds differences

between neighbor pixels

Original Detect edges



















111
181
111

Filter =

Sharpen

 Sum detected edges with original image

22

Original Sharpened

1 1 1

1 9 1

1 1 1

   
 
  

 
    

Filter =

Emboss

 Convolve with a filter that highlights gradients

in particular directions

23

Original Embossed
1 1 0

1 0 1

0 1 1

  
 


 
  

Filter =

Non-linear filtering

 Any operation on a neighborhood around each pixel

 For example: Selecting the median value of the neighborhood

24

Original 3x3 5x5

7x7 11x11 15x15

5/21/2008

5

Image Processing

 Pixel operations

◦ Add random noise

◦ Add luminance

◦ Add contrast

◦ Add saturation

 Filtering

◦ Blur

◦ Detect edges

◦ Sharpen

◦ Emboss

◦ Median

 Quantization

◦ Uniform Quantization

◦ Floyd-Steinberg dither

 Warping

◦ Scale

◦ Rotate

◦ Warps

 Combining

◦ Composite

◦ Morph

Quantization

 Reduce intensity resolution

◦ Frame buffers have limited number of bits per pixel

◦ Physical devices have limited dynamic range

26

n=0.5

Uniform Quantization

 P(x,y) = round(I(x,y))

27

I(x,y)

P(x,y) – 2 bits per pixel

Uniform Quantization

 Images with decreasing bits per pixel:

28

8 bits 4 bits 2 bits 1 bit

Reducing effects of Quantization

 Dithering

◦ Random dither

◦ Ordered dither

◦ Error diffusion dither

 Halftoning

◦ Classical halftoning

29

Dithering

 Distribute errors among pixels

◦ Exploit spatial integration in our eye

◦ Display greater range of perceptible intensities

Uniform

Quantization

(1 bit)

Floyd-Steinberg

Dither

(1 bit)

Original

(8 bits)

5/21/2008

6

Random Dither

 Randomize quantization errors

◦ Errors appear as noise

P(x, y) = trunc(I(x, y) + noise(x,y) + 0.5)

I(x,y)

P
(x

,y
)

I(x,y)

P
(x

,y
)

1 bit

Random Dither

Uniform

Quantization

(1 bit)

Random

Dither

(1 bit)

Original

(8 bits)

Ordered Dither

 Pseudo-random quantization errors

◦ Matrix stores pattern of threshholds

For each pixel (x,y)

oldpixel = I(x,y) +D(x mod n,y mod n)

P(x,y)= find_closest_color(oldpixel)











20

13
2D

Ordered Dither

 Bayer’s ordered dither matrices











20

13
2D





















10280

614412

91113

513715

4D




















2
2

22
2

2

2
2

22
2

2

)2,2(4)1,2(4

)2,1(4)1,1(4

nnnn

nnnn

n UDDUDD

UDDUDD
D

Basic idea: organize successive integers such that the average distance

between two successive numbers in the map is as large as possible

Ordered Dither

 An example

◦ Palette consists of 8 red tones, 8 green tones and

their combinations (64 colors)

◦ Original image had 19600 colors

35

Undithered Dithered

Ordered Dither

Random

Dither

(1 bit)

Original

(8 bits)

Ordered

Dither

(1 bit)

5/21/2008

7

Error Diffusion Dither

 Spread quantization error over neighbor

pixels

◦ Error dispersed to pixels right and below

Figure 14.42 from H&B

a

b g d

a  b  g  d  1.0

Floyd-Steinberg Algorithm

for (x = 0; x < width; x++) {

for (y = 0; y < height; y++) {

P(x,y) = trunc(I(x,y) + 0.5)

e = I(x,y) - P(x,y)

I(x,y+1) += a*e;

I(x+1,y-1) += b*e;

I(x+1,y) += g*e;

I(x+1,y+1) += d *e;

}

}

Error Diffusion Dither

Random

Dither

(1 bit)

Original

(8 bits)

Ordered

Dither

(1 bit)

Floyd-Steinberg

Dither

(1 bit)

More examples

40

Original Threshold Random Bayer

Floyd-Steinberg Jarvice, Judice & Ninke Stucki Burkes

Reducing effects of Quantization

 Dithering

◦ Random dither

◦ Ordered dither

◦ Error diffusion dither

 Halftoning

◦ Classical halftoning

41

Classical Halftoning

 Use dots of varying size to represent intensities

◦ Area of dots proportional to intensity in image

P(x,y)I(x,y)

5/21/2008

8

Classical Halftoning

Newspaper Image

From New York Times, 9/21/99

Halftone patterns

 Use cluster of pixels to represent intensity

◦ Trade spatial resolution for intensity resolution

Figure 14.37 from H&B

Halftone patterns

 How many intensities in a n x n cluster?

Figure 14.37 from H&B

Image Processing

 Pixel operations

◦ Add random noise

◦ Add luminance

◦ Add contrast

◦ Add saturation

 Filtering

◦ Blur

◦ Detect edges

◦ Sharpen

◦ Emboss

◦ Median

 Quantization

◦ Uniform Quantization

◦ Floyd-Steinberg dither

 Warping

◦ Scale

◦ Rotate

◦ Warps

 Combining

◦ Composite

◦ Morph

Image Warping

 Move pixels of image

Source image Destination image

Warp

Image Warping

 Issues

◦ How do we specify where every pixel goes? (mapping)

◦ How do we compute colors at destination pixels? (resampling)

Source image Destination image

Warp

5/21/2008

9

Example

 Image Scaling

◦ (x’,y’) = (sx*x, sy*y);

◦ I(x’,y’) = ?

49

Image Warping

 Image warping requires resampling of image

50

Resampling

BACK TO SAMPLING

51

Aliasing (again)

 In general:

◦ Artifacts due to under-sampling or poor reconstruction

 Specifically, in graphics:

◦ Spatial aliasing

◦ Temporal aliasing

Figure 14.17 FvDFHUnder-sampling

Spatial Aliasing

 Artifacts due to limited spatial resolution

Spatial Aliasing

 Artifacts due to limited spatial resolution

“Jaggies”

5/21/2008

10

Temporal Aliasing

 Artifacts due to limited temporal resolution

◦ Strobing

◦ Flickering

Temporal Aliasing

 Artifacts due to limited temporal resolution

◦ Strobing

◦ Flickering

Temporal Aliasing

 Artifacts due to limited temporal resolution

◦ Strobing

◦ Flickering

Temporal Aliasing

 Artifacts due to limited temporal resolution

◦ Strobing

◦ Flickering

Antialiasing

 Sample at higher rate

◦ Not always possible

◦ Doesn’t always solve problem

 Pre-filter to form bandlimited signal

◦ Form bandlimited function (low-pass filter)

◦ Trades aliasing for blurring

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

5/21/2008

11

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Continuous Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Discrete Samples

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Reconstructed Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Transformed Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Bandlimited Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Discrete samples

5/21/2008

12

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Display

Ideal Bandlimiting Filter

 Frequency domain

 Spatial domain

Figure 4.5 Wolberg

x

x
xSinc



sin
)(

Practical Image Processing
 Finite low-pass filters

◦ Point sampling (bad)

◦ Triangle filter

◦ Gaussian filter

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

C
o
n
vo

lu
ti

o
n

Triangle Filter

 Convolution with triangle filter

Input Output

Figure 2.4 Wolberg

Gaussian Filter

 Convolution with Gaussian filter

Input Output

Figure 2.4 Wolberg

AND BACK TO
WARPING

72

5/21/2008

13

Image Resampling

 What if we are resampling a 2D image?

(u,v)

Image Resampling

 Compute weighted sum of pixel neighborhood

◦ Output is weighted average

(u,v) W

(ix,iy)

d

dst(u,v)=0;

for(ix=u-w;ix<=u+w;ix++)

for(iy=v-w;iy<=v+w;iy++)

d=dist between (ix,iy) and (u,v)

dst(u,v) += k(ix,iy) * src(ix,iy)

Image Resampling

 For isotropic Triangle and Gaussian filters,

k(ix,iy) is a function of d and w

(u,v) W

(ix,iy)

d

Image Resampling

 For isotropic Triangle and Gaussian filters,

k(ix,iy) is a function of d and w

(u,v) W

(ix,iy)

d

Triangle Filtering (width <= 1)

 Bilinearly interpolate four closest pixels

◦ a = linear interpolation of src(u1,v2) and src(u2,v2)

◦ b = linear interpolation of src(u1,v1) and src(u2,v1)

◦ dst(x,y) = linear interpolation of “a” and “b”

(u1,v1)

(u2,v2)

(u2,v1)

(u1,v2)

(u,v)

a

b

Gaussian Filtering

 Kernel is a Guassian function

(u,v)

(ix,iy)

d

3w 

5/21/2008

14

Image Scale

 Scale (src, dst, sx, sy):

w  max(1/sx,1/sy);

for (int ix = 0; ix < xmax; ix++) {

for (int iy = 0; iy < ymax; iy++) {

float u = ix / sx;

float v = iy / sy;

dst(ix,iy) = resample(src,u,v,k,w);

}

}

Scale

0.5

y

x

v

u

(u,v)

(x,y)

How do we resample?

 Point sampling

◦ Simple but causes aliasing

 Triangle and Gaussian

◦ Algorithm as we saw earlier

80

Float resample(src,u,v,w) {

int iu = round(u);

int iv = round(v);

return src(iu,iv);

}

Image Warping (in General)

 Reverse Mapping

81

Image Warping (in General)

 Alternative (forward)

82

That’s it for today

 Next time?

◦ Finishing corners on image processing

◦ Transformations and Projections

◦ Rendering

83

