קורס גרפיקה ממוחשבת 2008 סמסטר ב'

Image Processing II

חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור 👔

- Warping to Mapping
- Seam Carving

- Last time we started to discuss warping and mapping
- In general, we define a transformation
 - Destination (x,y) for every source (u,v)

Example Mappings

- Scale by factor:
 - x = factor * u
 - y = factor * v

U

Scale 0.8

Example Mappings

Х

- Rotate by Θ degrees:
 - $x = u\cos\Theta v\sin\Theta$
 - $y = usin\Theta + vcos\Theta$

Rotate 30

Other Mappings

- Any function of u and v:
 - $x = f_x(u,v)$ • $y = f_y(u,v)$

Fish-eye

"Swirl"

"Rain"

- Another way to define mapping is by correspondences
 - $A \leftarrow \rightarrow A'$
 - $B \leftrightarrow B'$
 - $C \leftrightarrow C'$

- Another way to define mapping is by correspondences
 - $A \leftarrow \rightarrow A'$
 - $B \leftrightarrow B'$
 - $C \leftrightarrow C'$

• How to compute P'

$$P' = w_A A + w_B B + w_C C$$

- How to compute P'
 - $P' = w_A A + w_B B + w_C C$

Barycentric Coordinates

Possible application: Morphing

- User specifies corresponding points
- Blend while warping

Seam Carving

- Seam Carving for Content-Aware Image Resizing
- A 2007 SIGGRAPH paper
 - Ariel Shamir (IDC)
 - Shay Avidan (MERL)

Seam Carving

Cropping

Scaling

Seam Carving

Finding the Seam?

Finding the Optimal Seam

 $\Rightarrow s^* = \arg\min E(s)$

S

(c) ariel shamir

Dynamic Programming

Dynamic Programming

// (i

Optimal Order Map

Removal of vertical seams

0◀	43	16	19	
16	17	22	28	
19	31	25	35	
24	28	29	???	
32	35	33		
41	38	35		

A Local Operator!

Aspect Ratio Change

Aspect Ratio Change

Original

Seam Carving

Scaling

Aspect Ratio Change

Cropping

Seams

Scaling

(c) ariel shamir

Different Energy Functions

- Histogram of Gradient
- Entropy
- *E*₁
- Mean shift & E_1

Energy Preservation

Energy

While resizing: remove **as many** low energy pixels and **as few** high energy pixels!

(c) ariel shamir

Energy Preservation

If we measure the average energy of pixels in the image after applying a resizing operator...

... the average should increase!

Average Whiteeresizing: remove as many low energy pixels andeas few high energy pixels! Image Reduction

(c) ariel shamir

Reduce Width

Image Reduction

crop

pixel

optimal

Exercise #1 – Image retargeting

- See definition on course website
- Submission: on 18/6/2008
- Headsup:
 - Exercise #2 will be published 11/6/2008 (week overlap)
 - Exercise #3 will be published (I hope) beginning of July