
6/4/2008

1

קורס גרפיקה ממוחשבת
'סמסטר ב 2008

אור-ודניאל כהן פנקהאוסר טומס, דוראנדחלק מהשקפים מעובדים משקפים של פרדו 1

Rendering

What is 3D rendering?

 Construct an image from a 3D model

2

תאורה

מצלמה

3Dמודל

View Plane

Rendering

Rendering Scenarios

אינטראקטיבי

 10לפחות)מייצרים תמונות בשבריר שנייה ◦

כאשר המשתמש שולט בפרמטרים של (בשנייה

הרינדור

 יש צורך להשיג את האיכות הגבוהה ביותר בהתחשב

(הקצב הנדרש)בזמן הנתון

וכומשחקים , שימושי לויזואליזציות'

3

Rendering Scenarios

 אצווה(batch)

כל תמונה מיוצרת ברמת פירוט גבוהה ככל ◦

האפשר עבור סט ספציפי של פרמטרים

לוקח כמה זמן שצריך

 וכוסרטים , לפוטוריאליזםשימושי'

4Jensen

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

5

Camera Models
 The most common model is pin-hole camera

◦ All captured light rays arrive along paths toward focal
point without lens distortion (everything is in focus)

◦ Sensor response proportional to radiance

Other models consider ...

Depth of field

Motion blur

Lens distortion

View plane

Eye position

(focal point)

6/4/2008

2

Camera Parameters

 Position

◦ Eye position (px, py, pz)

 Orientation

◦ View direction (dx, dy, dz)

◦ Up direction (ux, uy, uz)

 Aperature

◦ Field of view (xfov, yfov)

 Film plane

◦ “Look at” point

◦ View plane normal

right

back

Up direction

Eye
Position

View
Plane

“Look at”
Point

View Plane

8

View plane

Eye position

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

9

Visible Surface Determination
 The color of each pixel on the view plane

depends on the radiance emanating from

visible surfaces

View plane

Eye position

Simplest method

is ray casting

Rays
through

view plane

Ray Casting

 For each sample …

◦ Construct ray from eye position through view plane

◦ Find first surface intersected by ray through pixel

◦ Compute color of sample based on surface radiance

Ray Casting

 For each sample …

◦ Construct ray from eye position through view plane

◦ Find first surface intersected by ray through pixel

◦ Compute color of sample based on surface radiance

6/4/2008

3

Ray Casting

 For each sample …

◦ Construct ray from eye position through view plane

◦ Find first surface intersected by ray through pixel

◦ Compute color of sample based on surface radiance

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

14

Lighting Simulation

 Lighting parameters

◦ Light source emission

◦ Surface reflectance

◦ Atmospheric attenuation

◦ Camera response

N
N

Camera

Surface

Light
Source

Lighting Simulation

16

OpenGL Reflectance Model

 Simple analytic model

◦ Diffuse reflection+

◦ Specular reflection+

◦ Emission+

◦ “ambient”

17

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

18

6/4/2008

4

Shadows

 Occlusions from light sources

19

Shadows

 Occlusions from light sources

◦ Soft shadows with area light source

20

Shadows

21

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

22

Path Types

23

Direct diffuse + indirect specular and transmission

Path Types

24

+ Soft Shadows

6/4/2008

5

Path Types

25

+ caustics

Path Types

26

+ indirect diffuse illumination

3D Rendering Issues

 What does a 3D rendering system have to do?

◦ Camera

◦ Visible surface determination

◦ Lights

◦ Reflectance

◦ Shadows

◦ Indirect lllumination

◦ Sampling

◦ Etc.

27

 Scene can be sampled with any ray

◦ Rendering is a problem in sampling and

reconstruction

28

RAY CASTING

29

3D Rendering
 The color of each pixel on the view plane

depends on the radiance emanating from

visible surfaces

View plane

Eye position

Simplest method

is ray casting

Rays
through

view plane

6/4/2008

6

Ray Casting
 For each sample …

◦ Construct ray from eye position through view plane

◦ Find first surface intersected by ray through pixel

◦ Compute color sample based on surface radiance

Ray Casting

 For each sample …

◦ Construct ray from eye position through view plane

◦ Find first surface intersected by ray through pixel

◦ Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through

view plane

Ray Casting

 Simple implementation:
Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Ray Casting

 Simple implementation:
Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Constructing Ray Through a Pixel

right

back

Up direction

P0

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel

 2D Example

d

Q towardsP0

right

right = towards x up

Q = frustum half-angle

d = distance to view plane

P1 = P0 + d*towards - d*tan(Q)*right

P2 = P0 + d*towards + d*tan(Q)*right

P1

P2

2
*d

*tan
(Q

)

P

P = P1 + (i/width + 0.5) * 2*d*tan (Q)*right

V = (P - P0) / ||P - P0 ||

V

Ray: P = P0 + tV

6/4/2008

7

Ray Casting

 Simple implementation:
Image RayCast(Camera camera, Scene scene, int width, int height)

{

Image image = new Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

Ray ray = ConstructRayThroughPixel(camera, i, j);

Intersection hit = FindIntersection(ray, scene);

image[i][j] = GetColor(hit);

}

}

return image;

}

Ray-Scene Intersection

 Intersections with geometric primitives

◦ Sphere

◦ Triangle

◦ Groups of primitives (scene)

 Acceleration techniques

◦ Bounding volume hierarchies

◦ Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Sphere Intersection
Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I
Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:

|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:

at2 + bt + c = 0

where:

a = 1

b = 2 V • (P0 - O)

c = |P0 - O|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV

Ray-Sphere Intersection II
Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V

if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)

t = tca - thc and tca + thc
P0

V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

 Need normal vector at intersection

for lighting calculations

6/4/2008

8

Ray-Scene Intersection

 Intersections with geometric primitives

◦ Sphere

» Triangle

◦ Groups of primitives (scene)

 Acceleration techniques

◦ Bounding volume hierarchies

◦ Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Ray-Triangle Intersection

 First, intersect ray with plane

 Then, check if point is inside triangle

P

P0

V

Ray-Plane Intersection
Ray: P = P0 + tV

Plane: N(P-P0)=0 P • N + c = 0

Substituting for P, we get:

(P0 + tV) • N + c = 0

Solution:

t = -(P0 • N + c) / (V • N)

N

P

P0

V

Algebraic Method

And the intersection at:

P = P0 + tV

P0

Ray-Triangle Intersection I

 Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 - P

V2 = T2 - P

N1 = V2 x V1

Normalize N1

if (P -P0) • N1 < 0

return FALSE;

end

Ray-Triangle Intersection II

 Check if point is inside triangle parametrically

P

P0

Compute a, b:

P = a (T2-T1) + b (T3-T1)

Check if point inside triangle.

0 a 1 and 0 b 1

a + b 1

V

a

b
T1

T2

T3

Other Ray-Primitive Intersections

 Cone, cylinder, ellipsoid:

◦ Similar to sphere

 Box

◦ Intersect 3 front-facing planes, return

closest

 Convex polygon

◦ Same as triangle (check point-in-polygon

algebraically)

 Concave polygon

◦ Same plane intersection

◦ More complex point-in-polygon test

Algorithms for 3D object intersection: http://www.realtimerendering.com/int/

http://www.realtimerendering.com/int/

6/4/2008

9

Intersection FindIntersection(Ray ray, Scene scene)

{

min_t = infinity

min_primitive = NULL

For each primitive in scene {

t = Intersect(ray, primitive);

if (t < min_t) then

min_primitive = primitive

min_t = t

}

}

return Intersection(min_t, min_primitive)

}

Ray-Scene Intersection

 Find intersection with front-most primitive in group

A

B

C

D

E

F

Brute Force!

Ray-Scene Intersection

 Intersections with geometric primitives

◦ Sphere

◦ Triangle

◦ Groups of primitives (scene)

» Acceleration techniques

◦ Bounding volume hierarchies

◦ Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Bounding Volumes

 Check for intersection with simple shape first

◦ If ray doesn’t intersect bounding volume,

then it doesn’t intersect its contents

Bounding Volume Hierarchies I

 Build hierarchy of bounding volumes

◦ Bounding volume of interior node contains all

children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Bounding Volume Hierarchies

 Use hierarchy to accelerate ray intersections

◦ Intersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1

1

2

A B

C 3

Bounding Volume Hierarchies III

FindIntersection(Ray ray, Node node)

{

// Find intersections with child node bounding volumes

...

// Sort intersections front to back

...

// Process intersections (checking for early termination)

min_t = infinity;

for each intersected child i {

if (min_t < bv_t[i]) break;

shape_t = FindIntersection(ray, child);

if (shape_t < min_t) { min_t = shape_t;}

}

return min_t;

}

 Sort hits & detect early termination

6/4/2008

10

Ray-Scene Intersection

 Intersections with geometric primitives

◦ Sphere

◦ Triangle

◦ Groups of primitives (scene)

» Acceleration techniques

◦ Bounding volume hierarchies

◦ Spatial partitions

 Uniform grids

 Octrees

 BSP trees

Uniform Grid

 Construct uniform grid over scene

◦ Index primitives according to overlaps with

grid cells

A

B

C

D

E

F

Uniform Grid

 Trace rays through grid cells

◦ Fast

◦ Incremental

A

B

C

D

E

F

Only check primitives

in intersected grid cells

Given an entry point into a cell

and a vector, its easy to

calculate exit point

Uniform Grid

 Potential problem:

◦ How choose suitable grid resolution?

A

B

C

D

E

F

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine

Octree

 A tree data structure used to partition

three dimensional space

 3D analog of Quadtrees (2D)

59

Octree

 Construct adaptive grid over scene

◦ Recursively subdivide box-shaped cells into 8 octants

◦ Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cells

Quadtree

6/4/2008

11

Octree

 Trace rays through neighbor cells

◦ Fewer cells

◦ More complex neighbor finding

A

B

C

D

E

F
Trade-off fewer cells for

more expensive traversal

Octree

 Very useful in computer graphics, used for

◦ Intersections

◦ Collisions

◦ Color quantization

◦ Surface reconstruction (meshing)

◦ …

62

Binary Space Partition (BSP) Tree

 Recursively partition space by planes

◦ Every cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

Binary Space Partition (BSP) Tree

 Simple recursive algorithms

◦ Example: point finding

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

3

Binary Space Partition (BSP) Tree

 Trace rays by recursion on tree

◦ BSP construction enables simple front-to-back

traversal

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

2

4

3

Binary Space Partition (BSP) Tree

RayTreeIntersect(Ray ray, Node node, double min, double max)

{

if (Node is a leaf)

return intersection of closest primitive in cell, or NULL if none

else

dist = distance of the ray point to split plane of node

near_child = child of node that contains the origin of Ray

far_child = other child of node

if the interval to look is on near side

return RayTreeIntersect(ray, near_child, min, max)

else if the interval to look is on far side

return RayTreeIntersect(ray, far_child, min, max)

else if the interval to look is on both side

if (RayTreeIntersect(ray, near_child, min, dist)) return …;

else return RayTreeIntersect(ray, far_child, dist, max)

}

6/4/2008

12

Other Accelerations

 Screen space coherence

◦ Check last hit first

◦ Beam tracing

◦ Pencil tracing

◦ Cone tracing

 Memory coherence

◦ Large scenes

 Parallelism

◦ Ray casting is “embarassingly parallelizable”

 etc.

Summary

 Writing a simple ray casting renderer is easy

◦ Generate rays

◦ Intersection tests

◦ Lighting calculations

 What next?

◦ IlluminationIllumination

