
Visible Surface Detection

(V.S.D)
(Chapt. 15 in FVD, Chapt. 13 in Hearn & Baker)

Computer Graphics 08b – Lior Shapira – Lecture 9

Overview

• Scan conversion

– Figure out which pixels to fill

• Shading

– Determine a color for each filled pixel

• Texture Mapping

– Describe shading variation within polygon

interiors

• Visible Surface Determination

– Figure out which surface is front-most at

every pixel

• Problem definition

– Given a set of 3D objects and a viewing

specifications, determine which lines or

surfaces of the objects should be visible.

– A surface might be occluded by other

objects or by the same object (self

occlusion)

• Two main approaches:

– Image-precision algorithms: determine

what is visible at each pixel.

– Object-precision algorithms: determine

which parts of each object are visible.

Hidden Lines Removal Hidden Surfaces Removed Coherence

• Most methods for V.S.D. use

coherence features in the surface:

– Object coherence.

– Face coherence.

– Edge coherence.

– Scan-line coherence.

– Depth coherence.

– Frame coherence.

Where Are We ?

Canonical view volume (3D image space)

Clipping done

division by w

z > 0

x

y

z

near far

clipped line

1

1

1

0

x

y

z

image plane

near far

clipped line

Back Face Detection

• Observation: In a volumetric object,

you never see the “back” faces of the

object (self occlusion).

• Reminder:

– Plane equation: Ax+By+Cz+D=0

– N=[A,B,C]T is the plane normal.

– N points "outside".

• Back facing and front facing faces can

be identified using the sign of V•N

N=[A,B,C]

V

• Three possibilities:

– V•N> 0 back face

– V•N< 0 front face

– V•N= 0 on line of view

• Convex objects

– For convex objects, back face detection

actually solves the visible surfaces

problem.

– Back face detection is easily applied to

convex polyhedral objects.

• In a general object, a front face can be

visible, invisible, or partially visible.

V

A
B

G

F

E

D C

H

Back Face Polygons: A, B, D, F

Front Face Polygons: C, E, G, H

V

Single Valued Function of

two variables

Without Hidden-Line Removal

With Hidden-Line Removal

Floating Horizon Algorithm

• Implicit Function: Y=f(X,Z).

• Represent as 2D array of x and z

values, each entry is the corresponding

y-value.

• Surface = many polylines; Each

polyline is constant in Z.

Algorithm:

Draw polylines of constant z from front
(near z) to back (far z).

Draw only parts of polyline that are visible:
ie above/below the silhouette (horizon).

X

ZY

old YMIN

Use 2 1D arrays YMIN and YMAX (with 1

entry for each x). When drawing a polyline of

constant z, for each x-value, test if above/below

YMAX/YMIN (at x location) and update arrays.

0 2 4 6 8 10 12
0

10

20

30

40
A

FE

C

D

B

G

30 28 26 25 24 29 34 33 32 34 36 33 30

10 12 14 15 16 15 14 13 12 12 12 13 14

36 34 32 26 20 22 24 16 8 7 6 21 36

36 34 32 26 24 29 34 33 32 34 36 33 36

10 12 14 15 16 15 14 13 8 7 6 13 14

old YMAX

polyline

new YMIN

new YMAX

A B C D E F G

old YMIN

Use 2 1D arrays YMIN and YMAX (with 1

entry for each x). When drawing a polyline of

constant z, for each x-value, test if above/below

YMAX/YMIN (at x location) and update arrays.

0 2 4 6 8 10 12
0

10

20

30

40
A

FE

C

D

B

G

30 28 26 25 24 29 34 33 32 34 36 33 30

10 12 14 15 16 15 14 13 12 12 12 13 14

36 34 32 26 20 22 24 16 8 7 6 21 36

36 34 32 26 24 29 34 33 32 34 36 33 36

10 12 14 15 16 15 14 13 8 7 6 13 14

old YMAX

polyline

new YMIN

new YMAX

A B C D E F G

• Floating Horizon Characteristics:

– Applied in image space (image

precision).

– Limited to explicit functions only.

– Exploiting edge coherence.

– Applicable for free-form surfaces.

Depth Sort

(Painter Algorithm)

• Sort all of the polygons in the scene

by their depth.

• Draw them back to front.

• Question: Does a depth ordering

always exist? Unfortunately, no.

– For polygons with constant Z value,

this sorting clearly works.

– For example: window systems.

y y

x x

• Question: What if polygons are not

Z constant?

• Observation: Given two polygons P

and Q, an order may be determined

between them, if at least one of the

following holds:

– 1. Z values of P and Q do not overlap.

– 2. The bounding rectangle in the x,y

plane for P and Q do not overlap.

– 3. P is totally on one side of Q’s plane.

– 4. Q is totally on one side of P’s plane.

– 5. The bounding rectangles of Q and P

do not intersect in the projection plane.

Z Z

Z

1 2

3 and 4

• If all the above conditions do not hold,

P and Q may be split along intersection

edge into two smaller polygons.

y y

x x

x

x x

Z-buffer Method

• In addition to the frame buffer (keeping

the pixel values), keep a Z-buffer

containing the depth value of each pixel.

• Surfaces are scan-converted in an arbitrary

order. For each pixel (x,y), the Z-value is

computed as well. The (x,y) pixel is

overwritten only if its Z-values is closer to

the viewing plane than the one already

written at this location.

Algorithm:

– Initialize the z-buffer and the frame-buffer:

depth(x,y)=MAX_Z ; I(x,y)=Ibackground

– Calculate the depth Z for each (x,y) position

on any surface:

• If z<depth(x,y), then set

depth(x,y)=z ; I(x,y)=Isurf(x,y)

• For polygon surfaces, the depth-buffer

method is very easy to implement using

polygon scan line conversion, and

exploiting face coherence and scan-line

coherence :

• Z = -(Ax+By+D)/C

• Along scan lines

Z'= -(A(x+1)+By+D)/C=Z-A/C

• Between successive scan lines:

Z'= -(Ax+B(y+1)+D)/C=Z-B/C

Z-buffer - Example

Z-buffer

Screen

Z-buffer Characteristics

• Implemented in the image space.

• Very common in hardware due its simplicity

(SGI's for example).

• 32 bits per pixel for Z is common.

• Advantages:

– Simple and easy to implement.

• Disadvantages:

– Requires a lot of memory.

– Finite depth precision can cause

problems.

– Might spend a lot of time rendering

polygons that are not visible.

– Requires re-calculations when changing

the objects scale.

– Does not do transparency easily

Scan Line Algorithm

• An extension of the polygon scan

conversion algorithm

• It uses the ET and AET, but for more than

one polygon.

• The edge record has a link into a polygon

table, which contains:

– The plane equation (a,b,c,d)

– The shading coefficients

– A in/out bit

• The active edges are those that

intersect the current horizontal slice.

• Observations: The visibility of an

span can be changed only where it

intersects an active edge .

Active line segments produce span boundaries

• The span are used to subdivide the

segments

• The span endpoints are an event

• In an event the closest segment is

detected.

• Question: Among who?

A

B

C

A

B C

The BSP Tree

• BSP = Binary Space Partitioning.

• Interior nodes correspond to

partitioning planes.

• Leaf nodes correspond to convex

regions of space.

• Tests 3 and 4 in Depth Sort technique

can be exploited efficiently:

• Let Lp be the plane P lies in: The 3D

space may be divided into the following

three groups:

– Polygons in front of Lp.

– Polygons behind Lp.

– Polygons intersecting Lp.

• Polygons in the third class are split, and

classified into the first two.

• As a result of the subdivision with

respect to Lp:

– The polygons behind Lp cannot obscure P,

so we can draw them first.

– P cannot obscure the polygons in front of

Lp so we can draw P second.

– Finally we draw the polygons in front of P.

The BSP-Tree Algorithm

• Construct a BSP tree:

– Pick a polygon, let its supporting plane

be the root of the tree.

– Create two lists of polygons: these in

front, and those behind (splitting

polygons as necessary).

– Recurse on the two lists to create the

two sub-trees.

• Display:

– Traverse the BSP tree back to front,

drawing polygons in the order they are

encountered in the traversal.

1 2

3

4
5

1 2

3

4
5

6

1 2

3

4
5

6
7

1 2

3

4

56

Should be prepared from the beginning !

BSP Properties:

• The BSP tree is view independent!

• The BSP tree is constructed using

the geometry of the object only.

• The tree can be used for hidden

surface removal at an arbitrary

direction.

• BSP = Object-precision alg.

Area Subdivision Technique

(Warnock 1969)

• Subdivide screen area recursively,

until visible surfaces are easy to

determine.

• Each polygon has one of four

relationships to the area of interest:

Surrounding Intersecting Contained disjoint

• If all polygons are disjoint from the

area, fill area with background color.

• Only one intersecting or contained

polygon: First fill with background

color, then scan convert polygon.

• Only one surrounding polygon: Fill

area with polygon’s color.

• More than one polygon is

surrounding, intersecting, or

contained, but one surrounding

polygon is in front of the rest: Fill

area with polygon’c color.

• If none of the above cases occurs:

Subdivide area into four, and recurse.

• Area subdivision = Image precision

technique.

When the resolution of the image is

reached, polygons are sorted by their Z-

values at the center of the pixel, and the

color of the closest polygon is used.

