What is this talk about?

- Deformation problem:

- Given some prescribed constraints, find an object which minimize some "geometric distance".
- Geometric distance should reflect similarity of objects.

- Many applications in computer graphics, geometric modeling, CAGD.

Related work

Geometric Deformation of Curves

$$
\operatorname{Dist}(C, \tilde{C})=\int_{0}^{L}\left\{| | \kappa-\left.\tilde{\kappa}\right|^{2}+|\tau-\tilde{\tau}|^{2}\right\} d l
$$

- Immediate consequence from fundamental theory of curves:

$$
\operatorname{Dist}(C, \tilde{C})=0 \quad \Leftrightarrow \quad C, \tilde{C} \quad \text { are rigid motion of each other. }
$$

Geometric Deformation of curves:

Given a curve C and a set of constraints $\left.f\right|_{\Omega}=g$,
Find a mapping $f: C \rightarrow f(C)$ such that $\operatorname{Dist}(C, f(C)) \rightarrow \min$

- This integral is non-linear:

Geometric Deformation

What does this talk include?

- We have tried several approaches... - Differential coordinates.
- Differential Coordinates for Interactive Mesh Editing.

Yaron Lipman, OIga Sorkine, Daniel Cohen-Or. David Levin, Christian Rössl and Hans-Peter Seidel

- Laplacian Surface Editing.

Oga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl and Hans-Peter Seldel

- Laplacian Framework for Interactive Mesh Editing.

Yaron Lipman, OIga Sorkine, Marc Alexa, Daniel Cohen-Or, David Levin

V Moving Frames and invariant methods.

- Linear Rotation-Invariant Coordinates for Meshes Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin
- Volume and Shape Preservation via Moving Frame Manipulation

Yaron Lipman, Daniel Cohen-or, Ran Gal, David Levin
V (Quasi-) Conformal free-form deformations.

- Recentresults.

First, lets examine geometric deformation of Curves.

- Geometric distance should reflect resemblance between curves and as such should ignore rigid motions.

- Use a classical rigid motion invariant representation: Curvature $\kappa(t)$ and torsion $\tau(t)$ to define: $\quad C, \tilde{C}:[0, L] \rightarrow R^{3}$

$$
\operatorname{Dist}(C, \tilde{C})=\int_{0}^{L}\left\{|\kappa-\tilde{\kappa}|^{2}+|\tau-\tilde{\tau}|^{2}\right\} d l
$$

Geometric Deformation of Curves

- Reduction: Instead for looking for f, we search for R:

$$
(\tilde{\mathbf{v}}, \tilde{\mathbf{n}}, \tilde{\mathbf{b}})=R(t)(\mathbf{v}, \mathbf{n}, \mathbf{b})
$$

- With constraints: $\left(\tilde{\mathbf{v}}\left(t_{i}\right), \tilde{\mathbf{n}}\left(t_{i}\right), \tilde{\mathbf{b}}\left(t_{i}\right)\right)=R\left(t_{i}\right)\left(\mathbf{v}\left(t_{i}\right), \mathbf{n}\left(t_{i}\right), \mathbf{b}\left(t_{i}\right)\right)$

Geometric Deformation of Curves

- Reduction: Instead for looking for f, we search for R:

$$
\operatorname{Dist}(C, \tilde{C})=\int_{0}^{L}|\kappa-\tilde{\kappa}|^{2}+|\tau-\tilde{\tau}|^{2} d l=\int_{0}^{L}\|\dot{R}\|_{F}^{2} d l
$$

Geometric Deformation of Curves

First, 1D objects - Curves.

- Representing the curve by a rigid motion invariant representation (instead of coordinate function) reduces the problem considerably:
- Frenet frame:

$$
\left(\begin{array}{l}
\dot{\mathbf{v}} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(t) & 0 \\
-\kappa(t) & 0 & \tau(t) \\
0 & -\tau(t) & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{v} \\
\mathbf{n} \\
\mathbf{b}
\end{array}\right)
$$

Geometric Deformation of Curves

- Reduction: Instead for looking for f, we search for R:

$$
\text { Theorem: } \quad \frac{1}{2}\|\dot{R}\|_{F}^{2}=|\Delta \kappa|^{2}+|\Delta \tau|^{2}
$$

Geometric Deformation of Curves

$$
\operatorname{Dist}(C, \tilde{C})=\int_{0}^{L}\|\dot{R}\|_{F}^{2} d l
$$

- Critical solutions of Dirichlet integral are called harmonic mappings.
- We have (still for curves):

Shape is preserved if:

- Frenet Frames where rotated by harmonic quantity.
- The Frenet Frames rotation map is geodesic curve on $\mathrm{SO}(3)$.
- But we know what are geodesics on $\mathrm{SO}(3)$: one parameter subgroup of SO (3)

$$
R(t)=e^{\log \left(R_{1}\right) t}, t \in[0,1]
$$

Rotation invariant Surface representation [Lipman e tal. 2005]

Rotation invariant Surface representation [Lipman et al. 2005]

Applications

- Deformation (prescribing frames on the surface):

Moving Frames on surfaces

- Moving frames on surfaces, generalization of Frenet-frame - Now we have two parameters.

Rotation invariant Surface representation [Lipman et al. 2005]

Rotation invariant Surface representation [Lipman et al. 2005]

Theorem 1: The set of coefficients $\left\{\omega_{\rho}^{(i)}, \omega_{, k}^{(i)}\right\}$ define a unique discrete surface up to rigid motion.
\qquad
Applications

- Morphing (linear blending of the coordinates) - can handle large rotations.

Geometric Distance and Optimal Rotation Field [Lipman et al. 2007]

- Let us seek optimal deformation.
- Maintain the first fundamental form (isometries) and minimize the second fundamental form. Define a geometric distance between isometric surfaces H the matrix of $d e_{3}$ (Gauss map) in local frame,

$\begin{gathered} \operatorname{Dist}(M, \tilde{M})=\int_{M}\\|H-\tilde{H}\\|_{F}^{2} d \sigma \\ \operatorname{Dist}(M, \tilde{M})=0 \Leftrightarrow M, \tilde{M} \text { congruent } \\ \operatorname{Dist}(M, f(M)) \rightarrow \min \end{gathered}$	\Longleftrightarrow	$\begin{gathered} \operatorname{Dist}(C, \tilde{C})=\int_{C}\left\{\|\kappa-\tilde{\kappa}\|^{2}+\|\tau-\tilde{\tau}\|^{2}\right\} d \sigma \\ \operatorname{Dist}(C, \tilde{C})=0 \Leftrightarrow C, \tilde{C} \text { congruent } \\ \operatorname{Dist}(C, f(C)) \rightarrow \min \end{gathered}$

Algorithm

- To Minimize $\operatorname{Dist}(M, \tilde{M})=\frac{1}{2} \int\|d R\|_{F}^{2} d \sigma$ we choose a parameterization of $\mathrm{SO}(3)$:

> Rotation angle is harmonic

- Conformal parameterization: $\left(\eta^{1}, \eta^{2}, \eta^{3}\right): R^{3} \mapsto S O$ (3)

$$
\int_{w}\|d d\|_{f}^{2} d \sigma=64 \int_{w} \frac{1}{\left(4+\|\vec{\eta}\|^{2}\right)^{2}}\|\nabla \vec{\eta}\|^{2} d \sigma
$$

Applications

- Morphing (linear blending of the coordinates) - can handle large rotations.

Applications

Linear Rotation-Invariant Coordinates
for Meshes

Yaron Lipman
Olga Sorkine
David Levin
Daniel Cohen-Or
Tel Aviv University

Geometric Distance and Optimal Rotation Field [Lipman et al. 2007]

- Similarly to the curve case we look for mapping R.

- Analogous to the curve case we have $\frac{1}{2}\|d R\|_{F}^{2}=\|H-\tilde{H}\|_{F}^{2}$ and therefore

$$
\operatorname{Dist}(M, \tilde{M})=\frac{1}{2} \int_{M}\|d R\|_{F}^{2} d \sigma
$$

The shape is preserved if the rotation map is harmonic

Shape Preserving Free-Form deformation

- Different approach to surface deformation.
- Surface based methods produce shape preservation but:
- Require solving large systems of equations (linear or non-linear).
- Require discretization of smooth differential operators.
- What about space (free-form) deformations?

Free-Form deformation - Pixar method

Discretization

Choose your favorite Laplace-Beltrami discretization [Polthier 93, Taubin 95, Meyer et al. 02, Wardetzky et al. 07]
Solve for the rotations of the frames (with constraints). Two cases

- One rotation axis: exist linear solution- the angle of rotation should be harmonic function of the mesh.

$$
\int_{T}\|d R\|_{F}^{2} d \sigma=\sum_{j=1}^{3} \cot \gamma_{i(j)}\left|\theta_{i(j+1)}-\theta_{i(j-1)}\right|^{2}
$$

- More than one rotation axis: A non-linear problem. However linear approximation is enough.

$$
\begin{aligned}
& \int_{\tau_{i}}\|d R\|_{F}^{2} d \sigma=W\left(\bar{\theta}_{i(1)}, \bar{\theta}_{i(2)}, \bar{\theta}_{i(3)}\right) \sum_{j=1}^{3} \cot \gamma_{i(j)}\left\|\bar{\theta}_{i(j+1)}-\bar{\theta}_{i(j-1)}\right\|^{2} \\
& w\left(\bar{\theta}_{(i n}, \bar{\theta}_{(i 2)}, \bar{\theta}_{\theta(3)}\right)=w\left(\eta_{(n)}\right)+w\left(\eta_{(i, 3)}\right)+w\left(\eta_{(i, j)}\right) \\
& w(\eta)=1 /\left(4+\mid v\| \|^{2}\right.
\end{aligned}
$$

- Integrate: use the first discrete surface equation.

Free-Form Deformations

- Recent free-form methods allow applying deformation using a flexible control polyhedra [Floater 03, Ju et al 05, Joshi et al. 07]:
$\mathbf{p}=\sum \alpha_{i}(\mathbf{p}) \mathbf{q}_{\mathrm{i}}$ $\mathbf{p} \mapsto F(\mathbf{p} ; \tilde{C})=\sum \alpha_{i}(\mathbf{p}) \tilde{\mathbf{q}}_{\mathrm{i}}$

[^0]- Disadvantage (in our context): Do not preserve shape.

Shape Preserving Free-Form deformation

- Two problems:
- Conformal mappings are hard to compute
- Schwarz-Christoffel mapping - computationally hard [T.A.Driscoll L.N.Trefethen 02]
- (non-trivial) Conformal mappings exist only in 2D.
- Class of conformal mappings in nD is trivial [Blair 02]

Result break

Shape Preserving Free-Form deformation

- Then the deformation is defined by:
$\mathbf{p}=\sum_{i} \alpha_{i}(\mathbf{p}) \mathbf{q}_{\mathbf{i}}+\sum_{i} \beta_{j}(\mathbf{p})\left(\mathbf{q}_{j+1}-\mathbf{q}_{\mathbf{j}}\right)^{\perp} \quad \mathbf{p} \mapsto F(\mathbf{p} ; \tilde{C})=\sum \alpha_{i}(\mathbf{p}) \tilde{\mathbf{q}}_{\mathrm{i}}+\sum \beta_{j}(\mathbf{p})\left(\tilde{\mathbf{q}}_{j+1}-\tilde{\mathbf{q}}_{\mathrm{j}}\right)$

Shape Preserving Free-Form deformation

- What is the class of space mappings $f: \Omega \subset R^{d} \rightarrow R^{d}$ we look for? (preserve shape)
- Conformal mappings are shape preserving:
- Angle preserving.
- Conformal mappings induce similarity transformations locally:
- induce harmonic rotation angle

Shape Preserving Free-Form deformation

- What class of space mappings can be produced using the standard Free-from deformation formulation?

- Each axis is treated independently.
- Affine invariance.

No hope for conformal mappings in this formulation of free-form deformations

Shape Preserving Free-Form deformation

- Idea: use the normals to create the blend between the coordinates...

$$
\mathbf{p}=\sum \alpha_{i}(\mathbf{p}) \mathbf{q}_{\mathbf{i}}+\sum_{i} \beta_{j}(\mathbf{p})\left(\mathbf{q}_{\mathbf{j}+1}-\mathbf{q}_{\mathbf{j}}\right)^{\perp}
$$

Green Coordinates

- Use the coordinate functions $\eta=(x, y, \ldots)$ for u :

$u(\boldsymbol{\eta})=\int_{c} u \frac{\partial G}{\partial n}-G \frac{\partial u}{\partial n} d \sigma \Longrightarrow$
$\boldsymbol{\eta}=\sum_{j \in T}\left[\int_{L_{i}} \xi \frac{\partial G}{\partial n} d \sigma-\int_{i,} G \mathbf{n}_{\mathrm{j}} d \sigma\right]$

\qquad

Results

Green Coordinates

- Question: what are $\alpha_{i}(\mathbf{p})$ and $\beta_{j}(\mathbf{p})$?

$$
\mathbf{p}=F(\mathbf{p} ; C)=\sum_{i} \alpha_{i}(\mathbf{p}) \mathbf{q}_{\mathbf{i}}+\sum_{i} \beta_{j}(\mathbf{p})\left(\mathbf{q}_{\mathbf{j}+1}-\mathbf{q}_{\mathbf{j}}\right)^{\perp}
$$

- Green third identity encode a similar relation:
- A harmonic function can be written as

Green Coordinates

- Use the coordinate functions $\eta=(x, y)$ for u :

Green Coordinates

$$
\mathbf{p} \mapsto F(\mathbf{p} ; \tilde{C})=\sum \alpha_{i}(\mathbf{p}) \tilde{\mathbf{q}}_{i}+\sum \beta_{j}(\mathbf{p})\left(\tilde{\mathbf{q}}_{j+1}-\tilde{\boldsymbol{q}}_{j}\right)^{+}
$$

- Theorem 2: The coordinate functions $\mathbf{p} \mapsto F(\mathbf{p} ; \tilde{C})$ posses closed form formulas for $\mathrm{d}=2,3$.

Results

Employment of partial cages

Results

- Observation (Conjecture): The mapping $\mathbf{p} \mapsto F(\mathbf{p} ; \tilde{C})$ is quasiconformal for $\mathrm{d}=3$.

Green Coordinates

- Theorem 3: It is possible to extend the coordinates to the exterior of the cage to achieve analytic continuation of the map F.

Left overs
Thanks for listening...

[^0]: - Advantages: Fast, simple, robust, not limited to surfaces.

