3D Modeling - Overview

CG09b
Lior Shapira
Lecture 10a

Based on:

Thomas Funkhouser,Princeton University

Course Syllabus

I. Image processing
 II. Rendering
 III. Modeling
 IV.Animation

Modeling
(Dennis Zorin, CalTech)

Modeling

- How do we ...
- Represent 3D objects in a computer?
- Acquire computer representations of 3D objects?
- Manipulate computer representations of 3D objects?

3D Objects

How can this object be represented in a computer?

3D Objects

H\&B Figure 10.46
This one?

3D Objects

Stanford Graphics Laboratory
How about this one?

3D Objects

This one?
H\&B Figure 9.9

3D Objects

This one?

3D Object Representations

- Points
- Point cloud
- Range image
- Surfaces
- Polygonal Mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Equivalence of Representations

- Thesis:
- Each representation has enough expressive power to model the shape of any geometric object
- It is possible to perform all geometric operations with any fundamental representation
- Analogous to Turing-equivalence
- Computers / programming languages Turingequivalent. But each does different things better!

Why different Representations?

- Efficiency for different tasks
- Acquisition
- Rendering
- Manipulation
- Animation
- Analysis

Data Structures determine algorithms!

Modeling Operations

- What can we do with a 3D object representation?
- Edit
- Transform
- Smooth
- Render

Pirates of the carribean

- Animate
- Morph
- Compress
- Transmit
- Analyze
- ...

Digital Michealangelo

Smoothing

3D Object Representations

- Desirable properties depend on intended use
- Easy to acquire
- Accurate
- Concise
- Intuitive editing
- Efficient editing
- Efficient display
- Efficient intersections
- Guaranteed validity
- Guaranteed smoothness
...

Outline

- Points
- Point cloud
- Range image
- Surfaces
- Polygonal Mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Range Image

- Set of 3D points mapping to pixels of depth image
- Acquired from range scanner

Range Image
Tesselation

Point Cloud

- Unstructured set of 3D point samples
- Acquired from range finder, computer vision, etc

Outline

- Points
- Point cloud
- Range image
- Surfaces
- Polygonal Mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Polygonal Mesh

- Connected set of polygons (usually triangles)

Stanford Graphics Laboratory

Subdivision Surface

- Coarse mesh \& subdivision rule
- Define smooth surface as limit of sequence of refinements

Zorin \& Schroeder SIGGRAPH 99
Course Notes

Parametric Surface

- Tensor product spline patches
- Each patch is a parametric function
- Careful constraints to maintain continuity

FvDFH Figure 11.44

Implicit Surface

- Points satisfying: $F(x, y, z)=0$

Polygonal Model

Implicit Model

Outline

- Points
- Point cloud
- Range image
- Surfaces
- Polygonal Mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Voxels

- Uniform grid of volumetric samples
- Acquired from CAT, MRI, etc.

FvDFH Figure 12.20

Stanford Graphics Laboratory

BSP Tree

- Binary space partition with solid cells labeled
- Constructed from polygonal representations

CSG (constructive solid geometry)

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

Boolean union

Boolean difference
Boolean intersection

CSG (constructive solid geometry)

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

Sweep

- Solid swept by curve along trajectory

Removal Path

Sweep Model

Outline

- Points
- Point cloud
- Range image
- Surfaces
- Polygonal Mesh
- Subdivision
- Parametric
- Implicit
- Solids
- Voxels
- BSP tree
- CSG
- Sweep
- High-level structures
- Scene graph
- Application specific

Scene Graph

- Union of objects at leaf nodes

avalon.viewpoint.com

Application Specific

Architectural Floorplan
(CS Building, Princeton University)

Taxonomy of 3D Representations

Equivalence of Representations

- Thesis:
- Each representation has enough expressive power to model the shape of any geometric object
- It is possible to perform all geometric operations with any fundamental representation
- Analogous to Turing-equivalence
- Computers / programming languages Turingequivalent. But each does different things better!

Computational Differences

- Efficiency
- Combinatorial complexity (e.g. O($n \log n$))
- Space/time trade-offs (e.g. z-buffer)
- Numerical accuracy/stability (degree of polynomial)
- Simplicity
- Ease of acquisition
- Hardware acceleration
- Software creation and maintenance
- Usability
- Designer interface vs. computational engine

