
Computer Graphics – Exercise 1 – Image Processing

Objective
The objective of this exercise is to implement several image processing algorithms and

demonstrate their behavior. You will implement all of the following algorithms:

 Sampling (40 pts)

o Nearest neighbor

o Bilinear interpolation

o Gaussian sampling

 Warping/Transforming (25 pts)

o Scale by a real factor (i.e. 0.5, 2.0)

o Rotate by a real factor

o Non-linear mapping (fish-eye, sine, bulge, swirl…)

 Convolution (35 pts)

o Uniform Blur

o Gaussian Blur

o Edge Detect

o Custom kernel

 Dithering (bonus)

o Floyd-steinberg

Definitions:

 Source image – the input image of the algorithm, the image supplied by the user.

 Destination image – the output image of the algorithm.

Sampling
These algorithms will be used and tested in the warping algorithms which appear below

Nearest neighbor

Nearest neighbor is the simplest method of sampling an image. Using nearest neighbor,

every pixel in the destination image corresponds to exactly one pixel of the source image

and receives its color.

Notice that if during sampling, you enlarge the image, several pixels of the destination are

going to take their color from a single pixel of the source image. This effect is sometimes

referred to as pixelization. Enlarging an image using nearest neighbor can be thought of as

simply stretching its pixels. Also notice that if you shrink the image, some of the source

pixels are going to get skipped entirely and their color is not going to end up in the

destination.

Bilinear interpolation

Bilinear interpolation is a slightly better sampling scheme than nearest-neighbor. Instead of

directly copying pixel values from the source image it uses linear interpolation to set the

destination's pixels values. For example, in the case of enlarging an image, bilinear

interpolation works as follow:

For every pixel d in the destination image, find its originating coordinates in the source

image, set d's value using bi-linear interpolation of the four nearest neighbors (in the source

image), as seen in class.

In the case of shrinking an image the process is slightly different and is left for you as part of

the exercise. Another explanation of bilinear interpolation can be found in the following

locations:

 http://www.gamedev.net/reference/articles/article2007.asp

 http://en.wikipedia.org/wiki/Bilinear_interpolation

Gaussian sampling

Each destination pixel's color is calculated as a weighted average of its source’s neighbors. It

is up to you to determine the parameters of the Gaussian.

http://www.gamedev.net/reference/articles/article2007.asp
http://en.wikipedia.org/wiki/Bilinear_interpolation

Warping/Transforming
In all of these assignments, use all three of the sampling methods you implemented above

Scale

Given a source image and a scaling factor, output a destination image who matches the

desired size. The scaling factor is uniform (i.e. same scale in X and Y axis).

Rotate

Rotate a source image by a given number of degrees. Note that you need to calculate the

size of the axis-aligned rectangle in which the rotated image can fit.

Non-linear mapping

Implement at least one non-linear mapping to transform a source image. Some examples:

Original Twirl Sine Pinch

Convolution
Given a source image, apply a convolution filter on it to produce the destination image. The

built in kernels should be blur (uniform and Gaussian) and an edge-detection operator. Also

you should support a custom convolution kernel supplied by the user (size can be fixed – 3x3

or 5x5). Output image should be at the same size as the input. Note that you need to address

what happens at the edges of the image.

Dithering (bonus)
As a bonus assignment you may implement an error-diffusion dithering algorithm such as

Floyd-Steinberg (which we learn in lesson #3, see also here -

http://en.wikipedia.org/wiki/Floyd-Steinberg_dithering).

Input to the algorithm should include the number of desired colors in the output image.

http://en.wikipedia.org/wiki/Floyd-Steinberg_dithering

How to write and submit the assignment?
The assignment should be written in a high level programming language (we highly

recommend Java but C/C++ is accepted, please ask before using other languages).

The program should be named cg10a_ex1 and accept as command line arguments the name

of a configuration file. The configuration file will be of the following format:

Just to be extra clear, four lines, text format. Matrix information (e.g. kernel) should be

represented column by column.

For example:

Example1.config

Parrot.jpg
Small_parrot.jpg
Scale_nearestneighbor
0.5

Example2.config

Seahorse.jpg
Rotated_seahorse.jpg
Rotate_gaussian
4

Example3.config

Building.png
Blurred_building.jpg
Convolution_custom
0 0.125 0 0.125 0.5 0.125 0 0.125 0

Running your program should look something like this:

Java –classpath . cg10a_ex1 Example1.config

<name of source image>

<name of destination image>

<name of algorithm to run>

<list of parameters separated by coma, can be empty if no parameters>

Additional notes

 Algorithm names in the config file should be:

o Warping

 Scale_nearestneighbor

 Scale_bilinear

 Scale_gaussian

 Rotate_<nearestneighbor, bilinear,Gaussian>

 Warp_<nearestneighbor, bilinear,Gaussian>

o Convolution

 Blur_gaussian, Blur_uniform, Edge_detect, Convolution_custom

o Dithering

 Dithering

 We will publish a few sample images on the website for you to try out

 If using Java use Java 6(!)

 You are expected to implement everything yourself, without use of image

processing utilities of the Java library

 We recommend using IntBuffer, ByteBuffer or BufferedImage to store an image in

Java

Grading

 You will be graded based on the quality of your implementation’s output on our

inputs (compared to the state of the art and to other submissions)

 Although optimization is not required your code must run at a reasonable amount of

time (e.g. in comparison to others)

 Copying code from anywhere/anyone is strictly prohibited and will result in

disqualification

Submission

 Submission must be in pairs (unless approved by Lior)

 On submission date (by midnight) you must send the following items to the address

listed below

o Source code should be placed in a zip file

o Executable (if its not java) should be packaged in a zip file and its extension

changed to zi_ so it isn't filtered by the mail server

o Documentation should be a 1-3 page document (doc, pdf) explaining the

structure of your code, how to operate the application and anything else

needed to make it work

 The email subject should be of the following format: ex1 <id1> <id2>, for example

"ex1 03444555 012333333"

 Submission and questions should be directed to:

chen.goldberg+TAU_CG@gmail.com

mailto:chen.goldberg+TAU_CG@gmail.com

