
Ex3 - OpenGL Game
TAU, Computer Graphics, 0368.3014, semester A 2009/2010

For this exercise you will implement a complete 3D game and render it using OpenGL. The
purpose of the exercise is not only to practice OpenGL but to also learn many computer
graphics related aspects such as orientation in a 3D space, Modeling, Parametrization,
Collision detection, texturing, Animation etc... It is hard to say what is and what isn't
graphics in computer games. Aspects clearly not related to graphics (e.g. Sound, AI) are not
addressed (although you may want to).

The exercise is divided into two parts - the first part concerns the creation of an ad-hoc 3d
game engine and the second part is about developing an actual game to use that engine.
The first part mostly follows strict guidelines and the second part gives more creative
freedom.

Part 1 - Basic game engine ... 2
Overview... 2
Game states .. 2

Planet state.. 2
Map state .. 3

Planets.. 3
Planet motion.. 5
Sphere parametrization .. 5
Planet mesh.. 6
Positioning on a sphere... 6

Positioning on a sphere with terrain... 7
Walking on a sphere... 7

Walking on a sphere with terrain... 7
Rendering ... 8

Lights and shadows.. 8
Meshes... 8
Skybox... 9
Planet styles ... 9

Textures .. 9
Color... 9
Material ..10
Partial transparency ...10
Environment ...10

Portals ..10
Acceleration ...10

Program flow ..11
Game loop ..11

Part 2 - Customized game play ... 11
Gameplay schemes..11
Advanced Effects ...12

Development Plan... 12
Milestones ..12
Tips ...13

Logistics ... 14
Grading..14

Submission ..14

Implementation...15
Startup code ..15
More useful links ... 0
Resources... 0
Installing JOGL ...15

Faq and Updates ...16

Part 1 - Basic game engine

Overview

The world in which the game takes place is a constellation a planets. The constellation is
composed of numerous orbiting planets. Each planet's orbits around a predefined axis. Each
planet has it's own distinct appearance and surface details.

The player controls an actor that is able to walk on planets. Each planet has at least one
portal object. When an actor walks into a portal he is immediately teleported to another
portal, possibly on anther planet. That way the player can move from one planet to another.
By default the player successfully completes a level by reaching a terminal portal (again, the
exact game play details are for you to decide, in part2).

In most games the game world is flat and gravity is constant. In this game the world is
composed of sphere-like objects, each with a center of gravity of it's own. One popular
game that uses this principle is "Super Mario Galaxy" (http://www.youtube.com/
watch?v=U-Qw1ClCVN8). Your challenge for part one is therefore to create a game engine
that simulates this special environment.

The following sections give more details about what you are required to implement.

Game states

You need to support at least two game states:
1. Planet state
2. Map state

Pressing m toggles between these two states.

Planet state

The player controls an actor which walks around on a planet's surface and interacts with his
environment. The view in this state is third-person. That is the camera should track the
actor from behind at a fixed distance. Upon entering a portal the player is teleported to
another portal.

The player controls the actor's movement using the arrow keys: Walking forward and
backwards with Up and Down arrows, and turning in place with Right and Left arrows.

http://www.youtube.com/watch?v=U-Qw1ClCVN8
http://www.youtube.com/watch?v=U-Qw1ClCVN8
http://en.wikipedia.org/wiki/Third_person_%28video_games%29#Third_person_view_games

Map state

In this state the player can view and inspect the planet on which the actor is situated. While
in that state the game is still running and the planets are orbiting. The player can switch to
this state at any time.

You should implement a basic 3D viewer. The player should be able to rotate the camera
around the planet on which the actor is located. Control the rotation using arrow keys.
Allow to zoom in and out using +/-. Note that if the planet is moving/spinning then the
camera should move accordingly.

Planets

The shape of a planet is essentially a sphere but it can be much more than that: By
associating a height value with each point on the sphere's surface we can have a diverse
terrain with hills and valleys. To do that you first need to have a 2D parameterization of the
sphere's surface (i.e. mapping surface points to 2D). Once you have that you can use a
single channel image to define the height value in each discrete parameterization
coordinate.

This kind of terrain is called a 2.5D terrain. It's not fully 3D terrain because, for example,
you can't use it to describe caves. Many classic games used 2.5D terrains to simplify their
logic, map design and hasten critical computations such as collision detection.

Implementing 2.5D terrain on a sphere is more challenging than on a plane. Creating the
initial mesh however is easy: Take a regular sphere mesh and scale each vertex such that
it's norm equals it's suitable height value.

The height map is simply a gray-scale image that you can create offline in any photo editing
tools such as Photoshop or Gimp, and then load it at runtime before the level starts to
generate the mesh.

The following shows an exaggerated example of this. The small picture is a grayscale
bitmap file representing the "Height" map. The two larger picture shows a screenshot of a
spherical planet distorted by the height map.

http://en.wikipedia.org/wiki/2.5D

You can assume that all objects on a planet are it's children. That is all transformations on
the planet effect the objects as well. Objects are not logically effected by planets other than
their own.

Planet motion

Planets should slowly orbit in space around a predefined axis. This axis can be either fixed
or the center of another planet (e.g. like a moon).

Planets may also rotate around themselves. However this might disorient the player to
much and is left up for you to decide.

There should be absolutely no consideration to the laws of physics. You should position and
animate the planets by aesthetics alone.

Sphere parametrization

There are many ways to parametrize a sphere. You've already seen in ex2 how to map a
sphere using Spherical Coordinates (latitude & longitude). However this method does very
poorly for us because it distributes very unevenly on the surface, and it's unintuitive to
draw/visualize in 2D.

http://www.vterrain.org/Textures/spherical.html
http://en.wikipedia.org/wiki/Spherical_coordinates

In Cubic mapping each point on a sphere is projected onto one of the 6 faces of a cube. This
allows us to easy draw/visualize in 2D the appearance of each of the faces of the sphere. It
still distribute unevenly but it is many times more suitable for our needs than Spherical
Coordinates (note that our planets don't have specific poles which we can ignore).

We recommend you use Cubic mapping due to it's all around simplicity, but there might be
better techniques for you to use.

Planet mesh

Given a parametrization and height image it is very to generate the planet's mesh; Simply
make the norm of every vertex to be equal to the height at it's parametrization.

There are many ways to represent a sphere using a mesh. The regular 3D sphere mesh
which is built from slices and stacks like the one GLU makes is very unsuitable for us.

A recursively subdivided Icosahedron, sometimes termed a Geo-sphere, is much better. A
Geosphere is composed from equal sized evenly distributed triangles. It can be created very
easily by recursively tessellating every triangle into 4 triangles. See tutorial here. The two
screen shots above depict a planet originated as a tessellated Icosahedron.

Positioning on a sphere

Walking and positioning on a sphere can be a bit confusing at first. Here I will attempt to
guide you through the principles. We assume that the center of the sphere is positioned at
(0,0,0).

What transformation places an object on a sphere?

As you know any transformation can be described using 4 vectors: Left, Up, Direction,
Location (see tips).

You can assume that objects in your game are never tilted, that is they are always standing
up straight. Therefore for a given location on a sphere the Up vector is automatically
determined:
up = normalized location
In other words anywhere you are in space you can tell that Down always points to the

http://www.opengl.org.ru/docs/pg/0208.html
http://docs.google.com/File?id=dhqw96sd_899ccg2ccc_b
http://docs.google.com/File?id=dhqw96sd_899ccg2ccc_b

center of the sphere, and up to the opposite direction.

The Up vector defines a circle on which both Left and Direction can reside. Thus given a
location, to completely determine the transformation you just need to fix either Left or
Direction (as having one will tell us about the other, by taking cross-product with Up).

And that's it. You can now position an object on a sphere given location and direction, or
location and left.

It might be more convenient for you to define an objects position using a location and a POI
(point of interest). In this scenario all you need to do is:

1. Calculate Up
2. Take the cross-product between (POI - Location) and Up to obtain Left
3. Take the cross-product between Left and Up to obtain Direction

Positioning on a sphere with terrain

To place the object on the surface with 2.5D terrain you should
1. Project Location to the parameterization space
2. Obtain the Height at that parameter
3. New Location = Height * Up

Walking on a sphere

The minimum you need to support for walking is: moving forward, backward, and turning in
place.

Using the positioning from the previous section it's easy to see that:
• Moving forward/backward is simply rotating the object around the Left vector.
• Turning is done by rotating the object around the Up vector.

However moving forward/backward by rotating around a vector is hard to work with. For
example the degree of rotation needs to be adjusted with the height in which the moving
takes place.

A more practical approach is to approximate the arc movement with a short line movement.
That is, to walk forward simply compute
Est Location = Location + Direction*velocity

Then normalize Est Location to obtain the new Up, and use it to compute the new location.
Since walking doesn't change the Left vector all that is left is to calculate the new Direction
(Cross-product).

Walking on a sphere with terrain

By simply positioning Est Location on a sphere with 2.5D terrain you can get very nice
results. The object will simply follow the contour of the terrain.

This will seem unrealistic because of gravity consideration. It is outside the scope of this
exercise to deal with the physics involved. However simple logic can be used to handle
common pitfalls. For example you can prevent walking if the height value in the new

location is much higher than the current height. Again, this doesn't really prevent the actor
from climbing steep walls, but you are not required to supply a complete solution.

Rendering

Lights and shadows

Some planets should emit lights that affect all other planet (e.g. suns). Shadows are not
required.

There is one situation that you should handle: Say an object is situated on a dark side of a
planet (i.e. when the light is on the other side). Unless you do something that object still
receives light (i.e. all it's polygons facing the light are lit). It looks very unrealistic to have a
partly lit object in a dark environment. The following picture gives an example of this:

Thus if a planet eclipse it's child object from a light source you should turn that light source
off when rendering the child. You can use the code for sphere-line intersection from ex2.

Note: This feature is perhaps the single most important feature in this exercise as it the
only thing that you can't do with a general purpose scene graph framework.

Meshes

You need to support loading and rendering meshes. You can use the same mesh format as
for ex2. We don't require texturing meshes, just regular shading. Meshes should be
rendered smoothly like in ex2.

Pay close attention to the resolution of the models and meshes. A model that is going to be
small on the screen doesn't need to have thousands of faces. this will just make your game

slow and memory hungry.

For the basic game you only need meshes for the player's actor and portals. Animating a
mesh is out of the scope of this exercise and therefore to make walking look good you
might want to pick a mesh without legs (ball, car, robot).

Note: A cheap way to animate walking is to edit the mesh and create two meshes in
different walking positions. Then in run-time you simply alternate between them.

Skybox

To achieve realism you should also render the world outside the constellation. This is
obviously done with textures. One way to do this is with a Skybox.

A skybox is composed of 6 images obtained from an offline projection of a 3D world onto
each face of a cube (e.g. using raytracing). Then in real-time we set each image as a
texture on a world cube (a huge cube containing most of our world). Thus when standing in
the middle of the cube we feel that we see the projected 3D world. You should make sure
that the cube is

1. Always centered at the camera (but never rotated)
2. Never writes to the depth buffer so to never hide anything else
3. Never accept lighting effect, especially diffuse and specular

Planet styles

Each planet should have it's distinct aesthetic style apart from it's shape and terrain. Each
planet should have it's own color material and rendering themes. That way you could
distinguish between different planets and relate portals to their planets more easily. Luckily
OpenGL makes it very easy to quickly diversify the drawing style of existing meshes and
textures. The following is a list of suggested techniques you might want to play with in order
to achieve diversity. You will not be graded according to how many of these you actually
incorporate in your game, but instead on the overall aesthetic appearance and diversity of
the planets.

Textures

Each planet should have at least one type of texture to define it's terrain. Either rocky,
grassy sand etc. Texturing the planet should again be somewhat simple with an existing
parametrization. A terrain texture is used as a repeated tile (e.g. here) and good terrain
textures are designed in such a way that the tiling is seamless.

Color

The most basic feature that each planet should have is it's own color scheme. It is very easy
to alter colors with OpenGL. If you want a purple planet you don't have to use a purple
texture. Instead you can use texture blending to incorportate the shading color with the
texture and secondly use colored light. Note that while rendering a given planet you can
change light colors of global lights (thus for example simulating atmosphere and evironment
lighting). The latter is very important, as for example you expect objects on a red planet to
appear reddish.

http://en.wikipedia.org/wiki/Skybox_%28video_games%29
http://www.innovativegames.net/blog/wp-content/uploads/2009/05/grass.jpg

Material

Naturally choosing different values of diffuse and specular factor may have a big effect on a
planet's surface appearance from far away. You might also go as far as to calculate normals
differently for each planet. For instance a very rocky planet might look better with flatter
shading.

Partial transparency

As we've discussed in class OpenGL can use blending to give an illusion of transparency.
Thus you can make a crystal-like planet quite easily.

On a closer look when walking on the surface, blending could help give an effect of only
partly transparent surfaces - for example an ice floor. You can achieve this look by using
blending and fog when rendering the surface.

Environment

In addition to giving each planet a distinct look from far away you should also work to make
each planet have a distinct feeling when on it. We've already mentioned the importance of
color lighting for realism.

Fog is a very simple but efficient OpenGL technique for adding realism through mist and
haze, but also to cover up the rigid polygonal appearance by adding noise to the scene.

Things also look differently when looking to space when on a planet. You might want to try
and add atmosphere effects by either using fog or even altering the color of the skybox.

Portals

A portal should look like an open doorway. Even two pillars to indicate it are enough. For
the interior itself you can use a variety of effects (e.g. see Advanced effects).

In general the portal should appear visually like the planet to which it teleports (for example
it should inherit it's material).

Acceleration

You must always use at least one OpenGL acceleration method (either Display lists or vector
arrays).

If performance is still an issue then you should code some simple logic to decide when or
not to render expensive things. For instance you can refrain from rendering items on
planets other than the one you are on.

In addition you can render non-current planets using fewer vertices. You can easily
accomplish this since your able to control the level of tessellation of a planet. You can even
use downscaling from ex1 to obtain a smaller height map that would require less vertices to
approximate.

Program flow

While you're not required to provide a game menu you might want to at least implement
one in GUI. After starting the game you should load the first level. When finished with win
load the next level. When lose restart the level.

Game loop

You can implement any game loop you desire. The only important thing is that game
updates occur in constant intervals.

Part 2 - Customized game play

Gameplay schemes

Now that you have the basic ad-hoc game engine you can easily use it to make a fun and
captivating game. For this part you are pretty much on your own but you are still required
to implement a minimum set of features. The following is a short list of possible game
styles. You should choose one and fill the minimum requirements. It's possible to work on

your own idea but be sure to first verify with chen.goldberg+TAU_CG@gmail.com.

• Arcade style
◦ Player quickly runs through the planet gathering coins and earning credit.

Avoid collision with dumb enemies. Kills enemies by jumping on them.
▪ Jumping - No need for physics calculation or anything. Just a 2.5D

jump.
▪ Gathering coins and trophies
▪ Dumb Enemies that runs toward the actor. Upon collision player

loses life.
◦ Like

▪ Any Super Mario game
• Shooter style

◦ Player walks around, killing his enemies and accumulating new weapons and
ammo.

▪ Gather weapons and ammo
▪ Use multiple weapons
▪ Point projectiles*
▪ Dumb enemies that fire at you

• Driving style
◦ Player drives though the planets, race against time. Planets should be

designed as long race tracks.
▪ Car-like control - Moves even without input
▪ Gathering Power-ups
▪ Better physics - allow car to tilt and respond to the normal of the

terrain.
• Sport style - Golf

◦ Player plays Golf. Aims ball and shoots. Where ever the ball stops, actor
starts again. Instead of a hole the ball should hit a portal which will teleport
it.

mailto:chen.goldberg+TAU_CG@gmail.com

▪ Ray projectile*
▪ Ball physics - Ball should bounce (reflection) and roll.

• Worms style
◦ Turn based game with multiple actors. Actor can stop and aim a rocket.

Fires projectiles at enemies on same and other planets. Wins when all
enemies are dead.

▪ Ray projectile* - Rockets should be effected by gravity of all planets
(approximation).

▪ Destructible terrain (easy in 2.5D!)
◦ Like

▪ Worms3D, Scorched Earth
• Puzzle style

◦ Each launcher is locked by a key which a player must get before moving on
▪ Something like portal, braid etc.

* Some games require different kinds of projectile collision detection. There are two kinds:
1. Point projectiles - Collision between this projectile and an object/terrain is

performed only at the location of the projectile. That is, it requires a Point collision
detection which is very efficient. Thus games that use this kind can have many
projectiles at the same time. This limitation forces either projectiles to move slower
or have (fatter enemies)

2. Ray projectiles - Collision between this projectile and an object/terrain is performed
at the path of a projectile over a turn. Thus allowing very fast projectiles. Since we
don't want you to spend time optimizing this, only games that use a single
projectiles at the same time should implement this. Generally it shouldn't differ
much for what you've implemented in ex2.

Note: If you implement the basic game engine sufficiently well then this part should be
rather simple. All it takes is just a small amount of game logic that operates the existing
scene graph, and a few specific engine modifications.

Advanced Effects

Implementing any of these advanced OpenGL techniques will give you a considerable bonus.

• Custom shader effects
• Shadows - Shadow volumes or shadow maps. If you implement shadows then it's

Ok if you don't animate the planets.
• See through Portals - The interior of a portal is a dynamic texture showing what's on

the other side of the portal (e.g. here) , as if the destination is on the other side of
the portal. Requires rendering to texture. Or playing with stencil, depth buffers.

• Particle systems

Development Plan

Milestones

The following is a suggested breakdown of the development process to short term goals

• Rendering the constellation

http://en.wikipedia.org/wiki/Portal_%28video_game%29
http://www.braid-game.com/
http://www.rounder.com/images/album/ROUN/ROUN0587_Cover.jpg

◦ First create the scene graph classes and their renderers
◦ Render the planets in space. For now use a dummy model to visualize them

(e.g. gluQuadric)
◦ Let some planets emit light and enable lighting
◦ Allow the user to control the camera and view the scene around a fixed

location
◦ Animate the planets

• Positioning an object
◦ Now focus the view on a single planet fixed at the center of the axes
◦ Position and render the actor on the sphere's surface
◦ Allow the player to control the actor (Walk, turn)

• Rendering a planet
◦ Replace the dummy planet models with your own sphere mesh

▪ Render smooth mesh
▪ Acceleration

◦ Implement parametrization
◦ Load height map
◦ Draw planet with 2.5D terrain
◦ Position and move actor according to 2.5D terrain
◦ Implement Planet State and let player follow actor
◦ Apply texture to planet
◦ Add portal objects

• Tying it all up
◦ Allow actor's planet to animate

▪ Make sure everything on planet works
◦ Activate portals
◦ Implement a SkyBox
◦ Handle the "dark side" effect

• Customized game play
◦ Consider what each game style requires you to add to the engine and decide

which is most suitable for you.

Tips

• Some code from ex2 and even ex1 is relevant here! Be sure to use it.
• You need a good vertex/matrix library. Java3D has some nice features.
• I can't stress enough how important it is to adopt an object oriented approach to

this exercise. Cramping all the code in a single class won't do it this time.
• Using OpenGL glRotate and glTranslate to position objects in space is nice but

rotating will drive you insane when dealing with spheres. A saner approach is to use
glMultMatrix and supply your own transformation matrix:

• Terrain glitches will happen and it's understandable. For instance walking next to a
steep hill, an actor might overlap the terrain. This is because we use a different
model for rendering and for logic. We render using a sampling of the height map,
thus if we don't sample densely enough then have these glitches. Again it's
understandable.

• Terrain texture glitches also might occur, since the process of mapping a 2D image
onto a sphere always creates problems around the edges. It is understandable but
should be kept as hidden as possible.

• A height map should be a grayscale image with values 0-255. Thus it only gives you
a relative height factor [0..1]. To convert it into absolute height you should add a
parameter for each planet determining the range of elevation.

• Using parametrization and maps you can describe the surface of the planets in far
more details. For instance create a bitmap for specifying terrain texture in each
location (e.g. areas of the image with color 1 represent grassy areas, 2 represent
stone areas...). Also with parametrization you can design planets offline by
specifying locations of objects on the planet.

• In positioning, remember that the order of vectors in cross-product matter, so be
consistent.

• Don't use Java timers!

Logistics

Grading

• Basic game engine - 55
• Custom Game play - 35
• Performance and aesthetics - 10
• Advanced graphics - Bonus

Performance is important in a real time game. At least 30fps on a modern desktop machine
with a modern graphics card. We are aware however that compatibility is always an issue,
and while a game may run flawlessly one platform it might crawl on another. We take this in
mind.

Submission

As before submission is in Pairs.
In the due date you need to submit a single zip file with the following:

• Full source code
• JAR file.
• A short document (2-4 pages) explaining:

◦ Instructions for the game
◦ Features you implemented
◦ The structure and design of your code
◦ Anything else needed to make it work. Please supply

Please submit your work to chen.goldberg+TAU_CG@gmail.com

Send One email containing everything you submit and wait for a confirmation. if you don't

receive a confirmation response after two days send again.

Please make sure you read the "FAQ and Updates" at the bottom of this page
frequently and before your submission.

mailto:chen.goldberg+TAU_CG@gmail.com

Implementation

We recommend you work with Java and JOGL for OpenGL support. You are welcome to
implement the game in C++/C#, but we can't guarantee support.

Startup code

This file is an initial framework for OpenGL. It contains the basic entry points discussed in
class and a simple scene made of two polygons so you could see that OpenGL works. feel
free to change this file anyway you like.
Main.java

Links

• SWT/JOGL
◦ http://www.eclipse.org/articles/Article-SWT-OpenGL/opengl.html
◦ http://kenai.com/projects/jogl/pages/Home

• Documentation
◦ http://download.java.net/media/jogl/jogl-2.x-docs/
◦ http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/

reference/api/org/eclipse/swt/opengl/package-summary.html
• A nice Tutorial to get you started

◦ http://www.geofx.com/html/OpenGL_Eclipse/OpenGL_Eclipse.html
◦ Notice that this tutorial talks about an Eclipse plugin and not a stand-alone

applications so you will need to ignore some of the things mentioned
• This guy wrote many books about developing games in Java, Java3D and JOGL

◦ https://fivedots.coe.psu.ac.th/~ad/index.html
• OFF meshes

◦ http://shape.cs.princeton.edu/benchmark/
◦ http://shapes.aimatshape.net/viewmodels.php?page=1

• space skyboxes I found
◦ http://quadropolis.us/node/2019
◦ http://gfx.quakeworld.nu/details/266/space/
◦ Google for more

• Textures - many free terrain textures online

Installing JOGL

Windows:
1. download JOGL from:

http://download.java.net/media/jogl/builds/archive/jsr-231-2.0-beta10/
jogl-2.0-windows-i586.zip
Don't be tempted to download the AMD64 version. It will cause you nothing but
trouble.

2. Save the zip file is your directory of choice, for instance in "C:\Program
Files\java"

3. Extract the zip file into a directory -
"C:\Program Files\java\jogl-2.0-windows-i586"

4. Create a new project in eclipse and add the startup code supplied below - Main.java.
5. Right click the project, go to properties->Java Build Path

http://shooshx.googlepages.com/openglMain4.zip
http://www.eclipse.org/articles/Article-SWT-OpenGL/opengl.html
http://kenai.com/projects/jogl/pages/Home
http://download.java.net/media/jogl/jogl-2.x-docs/
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/opengl/package-summary.html
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/swt/opengl/package-summary.html
http://www.geofx.com/html/OpenGL_Eclipse/OpenGL_Eclipse.html
https://fivedots.coe.psu.ac.th/%7Ead/index.html
http://shape.cs.princeton.edu/benchmark/
http://shapes.aimatshape.net/viewmodels.php?page=1
http://quadropolis.us/node/2019
http://gfx.quakeworld.nu/details/266/space/
http://download.java.net/media/jogl/builds/archive/jsr-231-2.0-beta10/jogl-2.0-windows-i586.zip
http://download.java.net/media/jogl/builds/archive/jsr-231-2.0-beta10/jogl-2.0-windows-i586.zip

6. Click "Add External JARs" and select the two JARs under "C:\Program
Files\java\jogl-2.0-windows-i586\lib"

7. Do the same to add SWT.jar from wherever you installed it.
After this the startup code should be able to compile but when you try to run it, it
will likely fail with an exception. the JOGL DLLs are still missing.

8. Locate the directory of the JRE or JDK you are using. for instance "C:\Program
Files\java\jre1.6.0_02". you can do that using the properties->Java Build Path
dialog. look under the JRE to see where it is installed.

9. Copy the JOGL DLLs from "C:\Program Files\java\jogl-2.0-windows-i586\lib"
to the \bin directory under of the JRE, in this example:"C:\Program
Files\java\jre1.6.0_02\bin"
This is the safest way to make java find these DLLs. there are other methods as well
which invlove changing the PATH environment variable. do this at your own risk.

Unix
1. If doesn't work ask me (Chen)

In the end, the DLLs and The JARs in your project should be of the same version. If you
have other versions of JOGL installed for some reason, make sure that java uses the right
ones.
After completing this the startup code should be working and displaying an OpenGL view.

Faq and Updates

No news is good news!

	Part 1 - Basic game engine
	Overview
	Game states
	Planet state
	Map state

	Planets
	Planet motion
	Sphere parametrization
	Planet mesh
	Positioning on a sphere
	Positioning on a sphere with terrain

	Walking on a sphere
	Walking on a sphere with terrain

	Rendering
	Lights and shadows
	Meshes
	Skybox
	Planet styles
	Textures
	Color
	Material
	Partial transparency
	Environment

	Portals
	Acceleration

	Program flow
	Game loop

	Part 2 - Customized game play
	Gameplay schemes
	Advanced Effects

	Development Plan
	Milestones
	Tips

	Logistics
	Grading
	Submission

	Implementation
	Startup code
	Links
	Installing JOGL

	Faq and Updates

