»" Modeling Il + Rendering leftovers

CG10a
Lior Shapira
Lecture 10

Some slide from Thomas Funkhouser, Princeton University

Parametric Surfaces

e Boundary defined by parametric functions:

o x =1 (uv)
-y =f,(uv)
> z=1/(u,v)
yu
Parametric functions
define mapping from
(u,v) to (x,y,2): "

—

I

u X

Z FvDFH Figure 11.42

Parametric Surfaces

* Boundary defined by parametric functions:

> x =1f(uv) P, P3
>y =1,(uwy)
> z=1/(u,v)
o/
* Example: quadrilateral p~ P,

u

f (u,v) =1-v)((1-u)x, +ux,)+Vv((1—u)x, +ux,)
fy (U, v) =(1=v)((1-u)y, +uy,) +v((1-u)y, +uy;)

f (u,v) =

1-v)((1-u)z,+uz)+v((1—-u)z, +uz,)

Parametric Surfaces

e Boundary defined by parametric functions:
o x =1 (uv)

>y =f(uy)
> z=1/(u,v)

» Example: ellipsoid

f (u,v) =r cosvcosu
f,(u,v)=r, cosvsinu

1Ez (U, V) — rz Sin'v H&B Figure 10.10

Parametric Curves

 Boundary defined by parametric functions:
> x = 1,(u)
>y = 1f,(u)

e Example: line segment U/

f (u)=(1-u)x, +ux,

fy (u) = (@ —u)y, +uy, H&B Figure 10.10

Parametric curves

How can we define arbitrary curves?

x = f(u)
y = f,(u)

Parametric curves

How can we define arbitrary curves?

V1
x = f(u)
u

y = f,(u) v

VO

Use functions that “blend” control points

x=f(u) =V0*(Il -u) +VI *u
y =f(u) =VO Xl -u) +VI *u

Parametric curves

More generally:

x(u) = I; B, (U)*Vi, Weights

(U)*Vi, «

y(u)=>"8, u Control Points
=0

XYW v,

Parametric curves

What B(u) functions should we use?
() =Y By () Vi
1=0

Y() =Y B (W)*Viy

Parametric curves

What B(u) functions should we use?

n V1
X(U) = B (u)*Vi,

y(u) = Zn: B, (u)*Vi, VO

Parametric curves

What B(u) functions should we use?
n V1
x(u) =) B (u)*Vi,
1=0

y(u) = Zn: B, (u)*Vi, VO V2

Parametric polynomial curves

e Polynomial blending functions:
V1

m

B.(u) = Zajuj
j=0

VO V2

* Advantages of polynomials
> Easy to compute
° Infinitely continuous

> Easy to derive curve properties

Parametric polynomial curves

e Polynomial blending functions:

V1
m .
- J
B.(u) = Z au
=0 V0 \V/2
* What degree polynomial? V1
> Easy to compute
> Easy to control
VO V2

> Expressive

Piecewise parametric polynomial curves

e Splines:

o Split curve into segments

> Each segment defined by low-order polynomial
blending subset of control vertices

e Motivation:
> Provides control & efficiency
> Same blending function for every segment

> Prove properties from blending functions

e Challenges
V4
> How to choose blending functions!?

> How to determine properties?

Cubic Splines

e Some properties we might like to have:

o Local control

° Interpolation F
> Continuity B,- (Lt) = Z ajl/t

> Convex hull j=0

Blending functions determine properties

2

Properties determine blending functions

Cubic Splines

* Splines covered in this lecture
> Cubic B-Spline

o Cubic Bezier

* There are many others

* Properties:

Local control

2. C? continuity
3.
4

. Convex hull

Approximating

Cubic B-Splines

Cubic B-Spline Blending Functions

Blending functions: Vo‘
B.(u)=> au’ o V1
j=0
b, b,
1] 1]
/ Vs eV,
)
0 0 0 0 —> (
1 1
b b
1 1 Vie
—> @
° 0 1 0 0 1 V5

Cubic B-Spline Blending Functions

e How to derive blending functions!? VO.
o Cubic polynomials
° Local control 0V1
> C2? continuity
> Convex hull
Vs, eV,

Cubic B-Spline Blending Functions

* Four cubic polynomials for four vertices

o |6 variables (degrees of freedom)

° Variables are a, b, ¢, d, for
four blending functions

b ,(u) =a,u’+byu®+c,u' +d
0 0 0 0 0
b, (u)=au’+bu®+cu'+d
1 1 1 1
b ,(u)=a,u’+bu®+c,u’+d
2 2 2 2 2

b_,(u)=a,u’+bu’+cu +d,

VO
)

Cubic B-Spline Blending Functions

e C2 continuity implies |5 constraints VO.
o Position of two curves same Vv
> Derivative of two curves same @ "1
o Second derivatives same

Cubic B-Spline Blending Functions

Fifteen continuity constraints:

0 =b_,(0) 0=b,7(0) 0=b.,"(0)
bo(D=b,(0) by ()=b"(0) b, (1)=b,(0)
b, (D=b,(0) by’ ()=b."(0) b, (1)=b,"(0)
bo()=b5(0) by’ ()=b3"(0) b *(1)=b,"(0)
bs(1)=0 b;(1)=0 b, (1) =0

One more convenient constraint:

b_(,(O) + b-l(o) + b-z(o) + b_;;(O) =1

Cubic B-Spline Blending Functions

* Solving the system of equations yields:

b (u) = /u +/u —/u+

b (u /u —u" +/ /
b_(/u+/u+/u+/
b—u(u, AZ

1u

e |n matrix form

(-1 3 -3 1)}(V,)
W=(u®> u® u 1)=

QW =)6 -3 0 3 o0llv

\l 4 1 O)KV3/

Cubic B-Spline Blending Functions

In plot form: VO.
B.(u)=> a,u’ o Vi
j=0
b_o b_l
1] 1]
/ V3 .VZ
O
0 0 — (
b ''b :
21) Vie
00 :1> 00 . VS.

Cubic B-Spline Blending Functions

* Blending functions imply properties: Vo

@

° Local control

: : Cvl
> Approximating
> C? continuity
> Convex hull

Vs, eV,
@

Cubic Splines

* Splines covered in this lecture
> Cubic B-Spline
» Cubic Bezier

Properties determine blending functions

¢

Blending functions determine properties

Cubic Bezier

* Developed around 1960 by both v
> Bezier (Renault) O\

> deCasteljau (Citroen) .Vl
* Properties: o V2
° Local control Vs
> C! continuity
o Interpolating (every third) V, @
V. ®

Cubic Bezier curves

Blending functions: y
m 0
B.(u)=)> au’ \ O
& v
Big Big
1 1
\ 0V2
V3
°0 0
1 1
B.. B.
Illﬂ Ilﬂ/ V4 ‘
0O 1 oO 1 V5‘

Cubic Bezier Curves

Bezier curves in matrix form:

Q(u) = ZHZV(TJ u'(1-u)™

=(1-u)V, +3u(d—u)?V, +3u’(1—u)V, +uv,
(-1 3 -3 1\(V,
3 -6 3 0|V,
3 3 0 0]V,
(1 0 0 0LV,

/

Bezier

= v u 1

M

Basic properties of Bezier curves

* Endpoint interpolation:

Q(O) :Vo
Q@) =V,

e Convex hull:

> Curve is contained within convex hull of control polygon

e Symmetry
Q(u) defined by{V,,....V.} = Q(1-u)defined by{V,,...,.V }

Bezier Splines

e For more complex curves,
piece together Bézier curves

e Solve for “interior’” control vertices
> Positional (C°) continuity
> Derivative (C') continuity

.
“““
.
PY g

«
ey
“a,
Ly}

Splines

e Mathematical way to express curves I
o €€) ° ’ 7

* Motivated by “loftsman’s spline ’

> Long, narrow strip of wood/plastic ll

o Used to fit curves through specified data points /

/
o Shaped by lead weights called “ducks” - -
> @Gives curves that are “smooth” or “fair” /
/

e Have been used to design: /

> Automobiles ,l

o Ship hulls //

o Aircraft fuselage/wing /

/
- -=-"
-
-
-
-,

Summary

Parametric Curves !
Splines |
Blending functions /

Polynomial -
B-Spline /

Bezier ,

What’s next?

» Use curves to create parameterized
surfaces

Watt Figure 6.21

DI'Nn NN

e Curves
e Surfaces

Parametric Surfaces

* How do we describe arbitrary smooth surfaces
with parametric functions!?

H&B Figure 10.46

Piecewise Polynomial Parametric Surfaces

* Surface is partitioned into parametric patches:

Patch R

vy =10

Same ideas as parametric splines!
Watt Figure 6.25

Parametric Patches

e Each patch is defined by blending control points

: i !
Same ideas as parametric curves! FVDEH Figure 11.44

Parametric Bicubic Patches

Point Q(u,v) on any patch is defined by combining control
points with polynomial blending functions:

-B,] 13]._2 JDI,B Bﬁl -
P, P, P, P
Q(H,V) — UM 2.1 2.2 2.3 2.4 MTVT
By B, b By
Py P Py Py

Where M Is a matrix describing the blending functions
for a parametric cubic curve (e.g., Bezier, B-spline, etc.)

Bezier Patches

IeS

e Propert

° Interpolates four corner points

o Convex hull

Local control

o

Watt Figure 6.22

Bezier Surfaces

e Continuity constraints are similar to the ones for
Bezier splines

FvVDFH Figure 11.43

ier Surfaces

Bez

» CO continuity requires aligning boundary curves

o~
-
9
L
=
l“-
)
(=9
t
=
5
o
©
o
1=
=
°
o

Patches

Watt Figure 6.26a

Bezier Surfaces

o C! continuity requires aligning boundary curves and
derivatives

Four sets of three control points must be collinear

Boundary

Control point polyhedra

Boundary

Patches Watt Figure 6.26b

Parametric Surfaces

* Advantages:
o Easy to enumerate points on surface

> Possible to describe complex shapes
e Disadvantages:
o Control mesh must be quadrilaterals

o Continuity constraints difficult to maintain

o Hard to find intersections

Comparison of Surface Reps

-

— Q k=
5 g Sg
D € s S O
=9 © = o't
Feature % S > S S
o v v U
Accurate No Yes Yes
Concise No Yes Yes
Intuitive specification No Yes No
Local support Yes Yes Yes
Affine invariant Yes Yes Yes
Arbitrary topology Yes No Yes
Guaranteed continuity No Yes Yes
Natural parameterization | No Yes No
Efficient display Yes Yes Yes

Efficient intersections No No No

n'77x 7w pnn'wn v

Trapezoid?

n'77x 7w onia'wn 7y

* Cue to object-object relationship.

* Provides additional depth cue.

NTAN

AR AAPAN NN'Y YVAND X I2IT'R — X @
NINNY N'77¥0 .A'Non DYV 7vwa vian X7
DOINN DXVN 7v NN

Penumbra Antumbra

(

O

‘NTANShadow Volume

Volume formed by
extruding the occluder
from the light source.

Open and infinite

Space inside the volume is
in shadow.

Space outside the
volume is not.

D' D'YUR 077X

extended

penumbra

Hard shadow Soft shadow

D'>0 0'77x

OMIRN PN 7712 79 D'Y7219 NIN 97X e
VP"AINNN 17Y PNINNI

D'YUZ 0'77X% NN

o Point light source

- For every pixel light source is
either visible or occluded

Hard Shadow

Receiver

N D77y Ny

Area light source Area light source
"\\\ g A g

Occluder

Penumbra /=

Receiver Receiver

?29%nN 2A1v'n 72V v'own nn

N1'XON 7W NIDIA'0ON NN e
NIRN NN 190N ©
AIXN NNIPN AIo ©
(Occluders) 0'7'7x¥n D'VP"AIXK 190N °©
(Receivers) 0'727 D'OP"AIX 190N ©
AIRN NN NNXIVIE7TIA DI ©

M1 T/'0VO e

D'OP"AIN ©

’ _ NIXN ©
. NMYY n77xn e
Ve M D'NXY 7Y NIOY e

—’7‘\\\——-— D'77% 7w OT'IRNI PI'T @

9% AwnN) TXYD

D7W OOl X7 p'oonl DIXY NIV'YN '0ON e
NI'0'0] NIV'Y NNDA TPNAN] °
)aIoN? vIYSNN °

n'77x "7

D'YUp D'77¥

n'o>Y 0'77y

D'TNI'A D'VPON

(hard) D'wp D'7%7¥

D" 1'2/D"NTI71 UX NN

Q10 7'90N X7 2"T2 72X ' — "7RVIV qI'T e
Billboard -

Projected object °

NN ND'NN »

Shadow textures °

Shadow volumes °

(N''2n NINS7) NI'VLVO N'IN — WKRIN QYN °
N1'¥01

'Tn '0'X — Ray tracing e

D' D'77X

D"MITX VX NiNN
7¥ QOIND MITN 1IN7 D'ON"'NN D" TA — NNINA ND'MN e
DUNTIPA IR DNIN
Accumulation buffer-a win'w
Shadow volumes -
Shadow textures °
UKIN AIY'N e
Light maps °
Discontinuity meshing °
Radiosity e
Ray-based e

Shadows and OpenGL

* In OpenGL we send the geometry for a

model t

e TheVisi
in our il

nrough the pipeline.
vility function, V, is not a constant

umination model.

o Per vertex information?

° Per fragment using a texture map!

> Some per-pixel masking function!?

* Recall that we need a V for each light.

Masking in OpenGL

* OpenGL provides several ways of masking
pixels
o Stencil buffer with stencil test
> Alpha test with fragment’s alpha values

> Blending with fragment’s and framebuffer’s
alpha values.

o Texture sampling and shaders.

Positive Light

e Algorithm
> Render scene with ambient illumination only

° For each light source
 Render scene with illumination from this light only
° Scale illumination by shadow mask

- Add contribution to frame buffer

Ad-Hoc and Custom Shadows

D'77¥ Q"'77 VIYO N'A' VIYO [INND

» Fake proxy geometry.
* Projection of model to a plane.

* Projection of a texture to a plane.

Fake Proxy Geometry

e Approximation of shadow
position and shape based
on object’s typical use.

 Typically assumes

H Z
%}{ Cube Object
overhead lighting.

o Typically assumes a single
flat ground plane as a
receiver.

e E.g., draw the bottom of
the bounding box.

Shadow (still part
of cube object)

Fake Proxy Geometry

~» Quite complex model.

» Know it will sit on a flat
floor.

o Will fail if we place
another object behind or
underneath it.

Projected Geometry

- Binngg] Me and my fake shadow

> Shadows for selected large receiver polygons

* Ground plane
* Walls

Projected Geometry

e Basic algorithm
> Render scene (full lighting)

° For each receiver polygon
- Compute projection matrix M
* Multiply with actual transformation (modelview)

- Render selected (occluder) geometry

Darken/Black

Projected Geometry Problems

o Z-Fighting
> Use bias when rendering

shadow polygons

> Use stencil buffer (no depth
test)

e Bounded receiver polygon

> Use stencil buffer (restrict
drawing to receiver area)

e Shadow polygon overlap

> Use stencil count (only the
first pixel gets through)

Projected Geometry Algorithm

» Stencil buffer algorithm (1bit stencil)

. Render scene without receiver polygon
Clear stencil buffer
. Render receiver polygon
- stencil operation ‘set’ (visible pixels)
. Render shadow polygons

- without depth test

- stencil test ‘is set?’

- stencil operation ‘clear’

- blending e.g. ‘dest = dest * 0.2’
(darken)

[=3 WMN R

Projected Geometry Problems

* Wrong Shadows & Anti-Shadows
> Obijects behind light source

> Objects behind receiver

light

.1 light

receiver

occluder behind receiver

occluder behind light

Projected Geometry

e Summary
> Only practical for very few, large receivers
> Easy to implement
> Use stencil buffer (z fighting, overlap, receiver)

> Efficiency can be improved by rendering
shadow polygons to texture maps

* Occluders and receiver ‘static’ for some time

-~ STENCIL BUFFER

Stencil Buffer

e The Stencil Buffer is another frame buffer,
like the Color Buffer, Depth Buffer and
Accumulation Buffer.

» Stencil Buffer can be used to specify a
pattern so that only fragments that pass

the stencil test are rendered to the color
buffer.

Stencil Buffer Example

Render the fragments only where the stencil buffer bit is 0

Stencil Buffer Color Buffer

-1 viIn'vyStencil buffer

e 2INNN

glClearStencil (0) ;
glClear (GL COLOR BUFFER BIT|GL STENCIL BUFFER BIT|GL DEPTH BUFFER BIT);
glEnable (GL STENCIL TEST);

°* |NANN NMTAN

glStencilFunc (GL EQUAL, //comparison function
0x1, // reference value
Oxff); // comparison mask

e TNIKXIN 3) Pniy [Nan + ATN NN D7D ARXINN
INY) NI 701 0'YIY NN Yalg [NINN L(NIMYOKN
3190 ,1 20n ,1-2 07T ,09X ,97NN

glStencilOp (GL KEEP, GL DECR, GL INCR);
glStencilMask (0xff);

OpenGL Stencil Buffer Functions

I/ glStencilFunc: set function and reference value for stencil testing

I/ func :Specifies the test function. Options: GL_NEVER, GL_LESS, GL_LEQUAL,

Il GL_GREATER, GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS.
/[Defaultis GL_ALWAYS.

/I ref : Specifies the reference value for the stencil test.

/Il refis clamped to the range [0,2n—1], where n is the number of bits for each fragment
/I in the stencil buffer. The initial value is 0.

// Mask: Specifies a mask that is ANDed with both the reference value and the stored

/I stencil value when the test is done. Default is all 1's.

void glStencilFunc (GLenum func , GLint ref , GLuint mask);

I/ gIStencilOp: set stencil test actions on the stencil buffer
//fail:Specifies the action to take when the stencil test fails. Options: GL_KEEP, GL_ZERO ,
//GL_REPLACE, GL_INCR, GL_DECR, and GL_INVERT. Default is GL_KEEP .
//zfail: Specifies the stencil action when the stencil test passes, but the depth test fails .
//Options and default same as for fail.
//zpass: Specifies the stencil action when both the stencil test and the depth test pass ,
//or when the stencil test passes and either there is no depth buffer
//or depth testing is not enabled. Options and default same as for fail .
void glStencilOp (GLenum fail , GLenum zfail , GLenum zpass);

LLumwyl rinnx? onait Ty

First, make sure we request the stencil buffer.

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
GLUT_DEPTH | GLUT_STENCIL);

Next, make sure we enable stencil test

glEnable(GL_STENCIL_TEST);

Example: Make a stencil buffer have value | inside a diamond shape and
value 0 outside.

glClearStencil(0x0); // specify stencil clear value
glClear(GL_STENCIL_BUFFER_BIT); // clear stencil buffer
/I Set the ref value to 0x1

glStencilFunc(GL_ALWAYS, 0x1, 0x1);

Il Replace stencil bit with ref (Ox1) whenever we process a fragment
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
Il draw a diamond (we’ll not really render the color buffer,

// but just use this to set the stencil buffer)
glBegin(GL_QUADS);

gl\Vertex2f(-1,0);

glVertex2f(0,1);

gl\Vertex2f(1,0);

glVertex2f(0,-1);

glEnd();

How to use Stencil Buffer to filter
rendering to Color Buffer

I/ render scene only where stencil buffer is 0
void display() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// fragment passes the test if stencil value at fragment is not equal to Ox1
glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);

// don’t change the value of the stencil buffer in any case
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

/] render the scene
renderScene();

Stencil Buffer-2 win'v

NI'NOPNYN o

7'2710 NIXON MK YN ©
NN D% o

glEnable (GL STENCIL TEST);

glStencilOp (GL KEEP, GL KEEP, GL REPLACE);

glStencilFunc (GL ALWAYS, 1, ~0);

glColorMask(0,0,0,0);

renderMirrorSurfacePolygons (thisMirror) ;

glDepthRange (1,1) ; // always

glDepthFunc (GL ALWAYS) ; // write the farthest depth value

glSstencilFunc (GL EQUAL, 1, ~O0); // match mirror’s visible pixels

glStencilOp(GL KEEP, GL_KEEP, GL KEEP); // do not change stencil values

renderMirrorSurfacePolygons (thisMirror) ;

nNNXY NIOPNYNAN X YTIN] NYD ©

Stencil Buffer-2 win'v

° NI9SYNYNN NX Y111

GLfloat matrix[4][4];
GLdouble clipPlanel[4];
glPushMatrix () ;
// returns world-space plane equation for mirror plane to use as clip plane
computeMirrorClipPlane (thisMirror, &clipPlane[0])
// set clip plane equation
glClipPlane (GL CLIP PLANEO, &clipPlane);
// returns mirrorMatrix for given mirror
computeReflectionMatrixForMirror (thisMirror, &matrix[O0][0]);
// concatenate reflection transform into modelview matrix
glMultMatrixf (&ématrix[0] [0]) ;
glCullFace (GL FRONT) ;
drawScene () ; // draw everything except mirrors
drawOtherMirrorsAsGraySurfaces (thisMirror); // draw other mirrors as
// neutral “gray” surfaces
glCullFace (GL BACK) ;
glDisable (GL CLIP PLANEO) ;
glPopMatrix () ;

SHADOW VOLUMES

Shadow Volumes

* A volume of space formed by an occluder
* Bounded by the edges of the occluder

point light
e Notice that the “far” end
LN T ocoluding of the volume goes to
T angle infinity

— Need to cap it

3D shadow volume

Shadow Volumes

e Compute shadow volume for all visible polygons from the light
source

e Add the shadow volume polygons to your scene database
> Tag them as shadow polygons

> Assign its associated light source

2D Cutaway of a Shadow Volume

Surface outside

S
:/?\? Shadowing shadow volume
o j (illuminated)
Light fhm
source === Shadow
g volume
@ “ (infinite extent)
t i ' \
Eye position |
(note that Surface inside
shadows are shadowed shadow volume
iIndependent of object (shadowed)

the eye position)

Shadow Volume Advantages

Omni-directional approach

> Not just spotlight frustums as with shadow maps
Automatic self-shadowing

o Everything can shadow everything, including self

> Without shadow acne artifacts as with shadow maps
Window-space shadow determination

> Shadows accurate to a pixel (Object method)

o Or sub-pixel if multisampling is available

Required stencil buffer broadly supported today

> OpenGL support since version 1.0 (1991)
> Direct3D support since DX6 (1998)

Shadow Volume Disadvantages

* |deal light sources only
° Limited to local point and directional lights

> No area light sources for soft shadows
* Requires polygonal models with connectivity

> Models must be closed (2-manifold)
> Models must be free of non-planar polygons

e Silhouette computations are required

> Can burden CPU
o Particularly for dynamic scenes

e Inherently multi-pass algorithm
e Consumes lots of GPU fill rate

Visualizing Shadow Volumes in 3D

< Occluders and light source cast out a shadow
volume

< Objects within the volume should be shadowed

Light
source

Scene with shadows from Visualization of the
an NVIDIA logo casting a shadow volume
shadow volume

Visualizing the Stencil Buffer Counts

Shadowed scene

Stencil buffer contents

red = stencil value of 1

Stencil counts
beyond 1 are
possible for
multiple or
complex
occluders.

Shadow Volumes
When Is a surface point inside shadow?

* Use a parity test similar to a “ray inside-
outside” test

e Initially set parity to 0 and shoot ray from
point light
eye to P °
° Invert parity when ray crosses shadow volume :
boundary eye
o parity = 0, not in shadow,

parity = |, in shadow 0

i occluder

parity=0 parity=1 parity=0

Problems With Parity Test

Eye inside of Self-shadowing of ~ Multiple overlapping
shadow volume visible occluders shadow volumes

Y Y ATR

/ \ / \ 7N
’ \ 1 \ 7oy N
1 \ 1 \ I \

Better Solution : Counter

\\|//
| ~ 20%
Light — | Shadowing object
source
I \
Zero " 1N
\
\ Zero
@ . L J 1 \ \\
T v
L T
| I +2 || 1 42\ \ ~ Shadowed
Eye / +1" : +3\ \ \ object
position Iy oy ™ N
4 | «

Shadow Volume Count =0

Better Solution : Counter

\\l /7
- 20<
Light Shadowing object
source :
I \
I \
Zero | +1 N
\

\ Z€Ero
@ p— |
clcYoy
I I
I P
I |
oy

/ i

+2 1 +2 0\ \ Shadowed
Eye I +1 \ \ \ object
position / +3y \
/ x M

| Shadow Volume Count = +|+1+1-] =2 |

Better Solution : Counter

o=
| — I\
Light — I Shadowing object
source o,
| \
Zero ,' 1N
\

\ Z€Ero

@ © Q b @ “ Unshadowed
[! " l' \ \ object
/ +2 1 42 \ \
Eye I +1! : \ Y \
.. | I +3\ \
position v v N

Shadow Volume Count = +1+1+1-1-1-1 =0

Graphics Hardware Approach Using The Stencil
Buffer

o Zpass approach
> Render visible scene to depth buffer
° Turn off depth and color, turn on stencil
o Init. stencil buffer given viewpoint

> Draw shadow volume twice using face culling

* |st pass: render front faces and increment when depth test
passes

* 2nd pass: render back faces and decrement when depth test
passes

* stencil pixels != 0 in shadow, = 0 are lit

Zpass Problem

Missed shadow
volume intersection
due to near clip plane
clipping; leads to
mistaken count

v Far clip
plane

Object injshadow :-(

Near clip
plane /

Zfail Approach

> Render visible scene to depth buffer
° Turn off depth and color; turn on stencil
o |nit. stencil buffer given viewpoint

> Draw shadow volume twice using face culling

° |st pass: render back faces and increment when
depth test fails

* 2nd pass: render front faces and decrement when
depth test fails

> stencil pixels != 0 in shadow, = 0 are lit

Clipping Plane Problem

o Zpass : Near clipping plane

> Move near clipping plane closer to eye!

* Lose depth precision in perspective
 Zfail : Far clipping plane
> Move far clipping plane closer to eye?

- Set far clipping plane to infinity.

* See “Practical & Robust Stenciled Shadow

Volumes for Hardware-Accelerated Rendering”
by Cass Everitt & Mark |. Kilgard, Nvidia

Zfail versus Zpass Comparison (1)

< When stencil increment/decrements occur
< Zpass: on depth test pass
< Zfail: on depth test fall
< Increment on
< Zpass: front faces
< Zfail: back faces
< Decrement on
< Zpass: front faces
< Zfall: back faces

Zfail versus Zpass Comparison (2)

e Both cases order passes based stencil operation
° First, render increment pass
° Second, render decrement pass
° Why!
° Because standard stencil operations saturate
* Wrapping stencil operations can avoid this

* Which clip plane creates a problem
° Zpass: near clip plane
° Zfail:far clip plane

 Either way is foiled by view frustum clipping
° Which clip plane (front or back) changes

Insight!

* |f we could avoid either near plane or far plane view
frustum clipping, shadow volume rendering could be

robust
* Avoiding near plane clipping
> Not really possible

o Objects can always be behind you
> Moreover, depth precision in a perspective view goes to hell
when the near plane is too near the eye
e Avoiding far plane clipping
> Perspective make it possible to render at infinity

> Depth precision is terrible at infinity, but
we just care about avoiding clipping

Examples

Scene with shadows. Same scene visualizing
Yellow light is embedded in the shadow volumes.
the green three-holed object.

P, Is used for all the

following scenes.

Details worth noting . ..

Fine details: Shadows
of the A, N, and T letters on
the knight's armor and shield.

Examples

Hard case: The shadow volume
from the front-facing hole

would definitely intersect

the near clip plane.

Examples

Alternate view of same scene with Shadow volumes from the
shadows. Yellow lines indicate alternate view.

previous view'’s view frustum boundary.

Recall shadows are view-independent.

Stenciled Shadow Volumes with
Multiple Lights

Three colored lights.
Diffuse/specular bump
mapped animated
characters with
shadows. 34 fps on
GeForce4 Ti 4600;
80+ fps for one light.

Stenciled Shadow Volumes for
Simulating Soft Shadows

Cluster of 12 dim
lights approximating
an area light source.
Generates a soft
shadow effect; careful
about banding. 8 fps on
GeForce4 Ti 4600.

The cluster of
point lights.

Issues With Shadow Volumes

e The addition of shadow volume polygons
can greatly increase your database size

» Using the stencil buffer approach, pixel fill
becomes a key speed factor

* Create a shadow volume from the
silhouette of an object instead of each

polygon
 Take care when coding the algorithm

SHADOW MAPS

Z-Buffer Shadow Maps

* Define a coordinate system (light space) such
that the light is the center of projection

* Render a depth buffer (z-buffer) of the visible
scene, each pixel (x’,y’, 2°)

* For each visible surface point in eye space
transform to light space
? (Xc’ Yo Zc) => (XI’ Y ZI)

e If z, > z’ then point is in shadow

Shadow Map

* Visible surface point E is in shadow and occluded by point L
when transformed to light space Light

Light-ray nearest
intersection point

Eye

If L is closer to the light than E, L
then E is in shadow

E

Eye-ray nearest
intersection point

Shadow Map :Two Pass Approach

| st Pass

View from light

Depth Buffer

2nd Pass

Visible surface depth

2nd Pass

Non-green in shadow

Final Image

Shadow Maps With Graphics Hardware

* Render scene using the light as a camerég)

* Read depth buffer out and copy to a 2D
texture.

> Rather than Binary projected shadow, we now have a
depth texture.

e Fragment’s light position can be generated using

eye-linear texture coordinate generation
- specifically OpenGLs GL_EYE_LINEAR texgen

° generate homogenous (s, t, I, q) texture coordinates as light-
space (X, Y, Z, W)

The Shadow Mapping Concept ()

e Depth testing from the light’s point-of-view
° Two pass algorithm
o First, render depth buffer from the light’s point-of-
view
* the result is a “depth map” or “shadow map”

- essentially a 2D function indicating the depth of the
closest pixels to the light

> This depth map is used in the second pass

The Shadow Mapping Concept (2)

e Shadow determination with the depth map
> Second, render scene from the eye’s point-of-view

° For each rasterized fragment
* determine fragment’s XYZ position relative to the light

* this light position should be setup to match the frustum
used to create the depth map

* compare the depth value at light position XY in the
depth map to fragment’s light position Z

The Shadow Mapping Concept (3)

e The Shadow Map Comparison

> Two values
* A =Z value from depth map at fragment’s light XY position
* B = Z value of fragment’s XYZ light position

o If B is greater than A, then there must be something
closer to the light than the fragment

* then the fragment is shadowed

o If A and B are approximately equal, the fragment is lit

Hardware Shadow Map Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heighten filtering artifacts

Issues with Shadow Mapping

* Not without its problems

° Prone to aliasing artifacts

- “percentage closer” filtering helps this

* normal color filtering does not work well
> Depth bias is not completely foolproof

> Requires extra shadow map rendering pass and
texture loading

> Higher resolution shadow map reduces blockiness
* but also increases texture copying expense

Issues with Shadow Mapping

e Not without its problems

> Shadows are limited to view frustums
* could use six view frustums for omni-directional light
> Objects outside or crossing the near and far clip
planes are not properly accounted for by shadowing
* move near plane in as close as possible

* but too close throws away valuable depth map precision
when using a projective frustum

