
1

Introducing MFC

Programming Windows with MFC, Second Edition. Jeff Prosise

2

Hello, MFC
Short Years Ago … Windows Applications written in C:

• Knowing the ins and outs of new operating system
• Knowing hundreds of different API functions

Today … C++ has become the professional Windows 
programmer’s language of choice.

MFC is a class library that:
• Abstracts the Windows API 
• Encapsulates the basic behavior of Windows

Window uses the Win32 API.

SDK – Software Development Kit
API – Application Programming Interface
MFC – Microsoft Foundation Classes



3

The Windows Programming Model

Traditional Programs: Procedural programming model.
• Programs execute top-to-bottom.
• The path varies depending on the input and conditions.

Windows programs: Event-driven programming model.
• Applications respond to events, by processing 
messages sent by the operating system.

events – keystroke, mouse click, command for windows repaint …

4

DLL –
Dynamic Link Libraries

The Message Handler 
can call local function, or 
API functions.

API functions such as 
creating a window, 
drawing a line, 
performing file I/O and 
many more.

API functions are 
contained in DLL’s.



5

Messages, Messages
Message Sent When
WM_CHAR A character is input from the 

keyboard.
WM_COMMAND The user selects an item from a menu, 

or a control sends a notification to its 
parent.

WM_CREATE A window is created.
WM_DESTROY A window is destroyed.
WM_LBUTTONDOWN The left mouse button is pressed.
WM_LBUTTONUP The left mouse button is released.
WM_MOUSEMOVE The mouse pointer is moved.
WM_PAINT A window needs repainting.
WM_QUIT The application is about to terminate.
WM_SIZE A window is resized.

6

Messages, Messages (Cont.)
The MSG structure contains message information from the 
message queue. 

typedef struct tagMSG
{

HWND hwnd; // Uniquely identifies a window.
UINT message; // Specifies the msg type.
WPARAM wParam; // Additional information
LPARAM lParam; //        about the msg.
…

} MSG;

For wParam and lParam, the exact meaning depends on the value 
of the message member. For WM_LBUTTONDOWN it is the 
state of the Ctrl or Shift keys, and the mouse coordinates.



7

Hungarian Notation
Prefix Data Type
b BOOL
c or ch char
clr COLORREF
cx, cy Horizontal or vertical distance
dw DWORD
h Handle
l LONG
n int
p Pointer
sz Zero-terminated string
w WORD
wnd CWnd
str CString
m_ class member variable

Note:
Prefixes can be 
combined:

pszName
m_nAge

8

Introducing MFC
• MFC is the C++ library Microsoft provides to place an 

object-oriented wrapper around the Windows API.
• No need to call the Windows API directly.
• Create objects from MFC classes and call member 

functions (some functions are thin wrappers around the 
API).

• Visual C++ Wizards.
• MFC is also an application framework.
• Helps define the structure of an application and handles 

many routing chores.
• Document / View architecture.



9

The First MFC Application

class CMyApp : public CWinApp {
public:

virtual BOOL InitInstance ();
};

class CMainWindow : public CFrameWnd {
public:

CMainWindow (); // ctor

protected:
afx_msg void OnPaint (); 
DECLARE_MESSAGE_MAP ()

}; 

Hello.h

10

#include <afxwin.h>
#include "Hello.h"

CMyApp myApp; // The one and only application

// CMyApp member functions
BOOL CMyApp::InitInstance () {

m_pMainWnd = new CMainWindow; // create app window
m_pMainWnd->ShowWindow (m_nCmdShow);
m_pMainWnd->UpdateWindow ();  // force repaint
return TRUE; // otherwise application shutdown

}

// CMainWindow message map and member functions
BEGIN_MESSAGE_MAP (CMainWindow, CFrameWnd)

ON_WM_PAINT ()
END_MESSAGE_MAP ()

Hello.cpp



11

CMainWindow::CMainWindow () {
Create (NULL, _T ("The Hello Application"));

}

void CMainWindow::OnPaint () {
CPaintDC dc (this);    // Device context

CRect rect; // Client rectangle
GetClientRect (&rect); // area

dc.DrawText (_T ("Hello, MFC"), -1, &rect,
DT_SINGLELINE ¦ DT_CENTER ¦ DT_VCENTER);

} 

Hello.cpp (cont.)

12

The Hello Application



13

The Application Object
The heart of an MFC application is an application object based 
on the CWinApp class.

CWinApp class
• provides the message loop that retrieves messages. 
• dispatches them to the application’s window.

An application can have one, and only one, application object.

CMyApp declares no data members and overrides one inherited 
function.

• InitInstance is called early.
• InitInstance is where a window is created.

14

The InitInstance Function
CWinAp::InitInsance is a virtual function.

Its purpose is to provide the application with the opportunity to 
initialize itself.

At the very least, this means creating the window that will 
represent the application on the screen.

m_pMainWnd is a CWinApp object data member variable.



15

The Frame Window Object
Hello’s window class, CMainWindow, is derived from MFC’s
CFrameWnd class.

A Frame window is a top level window that serves as an 
application’s primary interface to the outside world.

The window seen on the screen is created in CMainWindow’s
constructor.

Create’s first argument, NULL, creates the default frame 
window.

16

Painting the Window
Hello’s window class get painted on WM_PAINT messages.

In Hello, these are processed by OnPaint().

All graphical output is preformed through device context
objects that abstract the physical destinations for output.

Default font and text color are used.

CPaintDC is a special case that is used only in WM_PAINT.



17

The Message Map
How did a WM_PAINT message turn to a call to OnPaint() ?

A message map is a table that correlates messages and member 
functions. Some complex macros by MFC.

How to create a message map:

1. Declare it by adding DECLARE_MESSAGE_MAP.

2. Implement it by placing macros identifying messages 
between BEGIN_MESSAGE MAP and 
END_MESSAGE_MAP.

3. Add member function to handle the messages.

Any class derived from CCmdTarget can contain a 
message map.

18

Message Map (Cont.)

Usage of other generic macros:

ON_MESSAGE(WM_SETTEXT, OnSetText)

With the declaration:

afx_msg LRESULT OnSetText(WPARAM wParam, 
LPARAM lParam);

Or command macros provided by

ON_COMMAND(ID_FILE_OPEN, OnFileOpen)

For the File Open command.



19

Drawing in a Window
The part of Windows responsible for graphics output is the GDI.

Windows created a Device Independent output model, allowing 
identical code for all graphics adapters, printers and other 
devices.

The Device Context object:

• Serves as the key that unlocks the door to output devices.
• Encapsulates the GDI functions used for output.

CPaintDC* pDC = new CPaintDC(this);
// Do some drawing

delete pDC;

GDI – Graphics Device Interface

20

Device Context Classes

For drawing anywhere in a window, including the 
nonclient area

CWindowDC

For drawing in a window's client area (anywhere but 
OnPaint())

CClientDC

For drawing in a window's client area (OnPaint()
handlers only)

CPaintDC

DescriptionClass Name

• All devices have the same functions.
• Each class’s ctor and dtor call the appropriate 
functions to get and release the Device Context.



21

Drawing With the GDI

Draws a rectangle with square cornersRectangle

Draws a circle or an ellipseEllipse

Connects a set of points with line segmentsPolyline

Draws a single pixelSetPixel

Draws a line from the current position to a specified position 
and moves the current position to the end of the line 

LineTo

Sets the current position in preparation for drawingMoveTo

DescriptionFunction

22

GDI Pens
Windows uses the pen that is currently selected into the device 
context to draw lines and borders.

MFC represents GDI pens with the class CPen.

CPen pen(PS_SOLID, 1, RGB(255, 0, 0));
CPen* pOldPen = dc.SelectObject(&pen);

// drawing using red pen

dc.SelectObject(pOldPen);

CPen uses three defining characteristics: style, width and color.

Note: the GDI object was deselected at the end of its usage.



23

The Mouse and the Keyboard
The two most common input devices are the mouse and the 
keyboard.

Their input comes in the form of messages.

The WM_ messages, require further processing before being 
sent to the application.

24

Getting Input from the Mouse
Reported mouse events are:

• WM_xBUTTONaction

where x∈[L|M|R] and action∈[DOWN|UP|DBLCLK]

for left/middle/right button press/release/doubleclick.

// WM_MBUTTONDBLCLK on a middle button double click.

• WM_MOUSEMOVE for cursor movement.

A left double click creates the following messages:
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDBLCLK
WM_LBUTTONUP



25

Mouse Message Map

Prototyped as follows:
afx_msg void OnMsgName(UINT nFlags,

CPoint point);

Where point is the mouse location at the action and nFlags is the state of the 
mouse buttons, Shift and Ctrl keys.

OnLButtonDownON_WM_LBUTTONDOWNWM_LBUTTONDOWN

OnMouseMoveON_WM_MOUSEMOVEWM_MOUSEMOVE

FunctionMessage Map MacroMessage
Message map macros and message handlers:

26

Message Box
A useful tool to display messages:

int MessageBox(LPCTSTR lpszText,
LPCTSTR lpszCaption=NULL, UINT nType=MB_OK);

For example:

MessageBox(_T("X wins!"), _T("Game Over"), 
MB_ICONEXCLAMATION | MB_OK); 

Which returns with a IDOK code.



27

Getting Input from the Keyboard
A windows application learns of keyboard events just like the 
mouse, through messages.

For printable characters, a program receives a message 
whenever the key is pressed.

Just process the WM_CHAR message and check for key codes.

This message is mapped with an ON_WM_CHAR entry to 
OnChar().

afx_msg void OnChar(UINT nChar,
UINT nRepCnt, UINT nFlags);

Other virtual keys (Alt, ESC, PgUp, Left Arrow …) 
are handled differently.

28

Menus
Drop down menus are the most widely recognized GUI.

Menus contribute to programs ease of use.

Windows handles menus graphically, and MFC routes menu 
item commands to designated class members.

Menus resources can be placed in the resource file, and loaded 
on run time. The menu editing is done in Visual C++ resource 
editor.

A resource file (.rc) defines the applications resources, 
such as binary objects, menu, icons etc…



29

Menu Commands
WM_COMMAND messages are sent when selecting menu 
items (for example with an ID_FILE_NEW identifier).

An ON_COMMAND statement in the message map links this 
messages to a class member function.

ON_COMMAND(ID_FILE_NEW, OnFileNew)

Prototyped as

afx_msg void OnFileNew();

30

Updating the Items in a Menu
MFC provides a convenient mechanism for keeping menu 
items updated.

ON_UPDATE_COMMAND_UI macros in the message map 
link selected member functions to serve as update handlers.
ON_UPDATE_COMMAND_UI(ID_COLOR_RED,OnUpdateColorRed)

void CMainWindow::OnUpdateColorRed(CCmdUI* pCmdUI){
pCmdUI->SetCheck (m_nCurrentColor == 0);

}

Other CCmdUI methods are Enable(), SetCheck(), SetRadio()
and SetText().

ON_UPDATE_COMMAND_UI connects menu items to update handlers.



31

Add Windows Message Handlers
Visual Studio’s ClassWizard can be used to add command 

handlers and update handlers.

1. Right-click CChildView in the class view, and select ‘Add 
Windows Message Handler’.

2. Select the ID_identifier from the ‘Class or object to 
handle:’.

3. Double-click COMMAND or UPDATE_COMMAND_UI 
from the ‘New Windows messages/events:’.

4. Accept the default function name.

5. Finish by clicking the Edit Existing button, to go to the 
handler.

32

Controls
A control is a special kind of window designed to convey information to the 
user or to acquire input.

The classic controls are:

CStatic"STATIC"Static controls

CScrollBar"SCROLLBAR"Scroll bars

CComboBox"COMBOBOX"Combo boxes

CEdit"EDIT"Edit controls

CListBox"LISTBOX"List boxes

CButton"BUTTON"Buttons

MFC ClassWNDCLASSControl Type



33

The Classic Controls

MFC uses message maps to link control notifications to class 
member functions.

ON_BN_CLICKED(IDC_BUTTON, OnButtonClicked)

There are ON_EN macros for edit controls and ON_LBN 
macros for list box controls.

The generic ON_CONTROL macro handles all notifications 
and all control types.

Controls are windows! Some useful inherited CWnd member 
functions are SetWindowText, SetFont, EnableWindow etc…

34

Dialog Boxes
A dialog box is a window that pops up to obtain input from the 
user.

A modal dialog box disables its parent window until dismissed 
(like file open dialog)

A modeless dialog box acts as a conventional window. It does 
not disable its parent (like floating toolbar).

Both are encapsulated in MFC’s CDialog class.

Use & to place an underline in the caption of a control.
“Save &As…” Save As…



35

Creating a Modal Dialog Box
Create a new dialog using VC++ Insert Dialog command, from 
the Resource Tab.

Modify the dialog by adding desired controls.

Double Clicking the dialog opens the ClassWizard which 
guides to the addition of a new class, inherited from CDialog.

VC++ creates the new class, and places it in the project, linking 
it to the dialog box.

Activation of the new dialog class is done simple by:

CMyDialog dlg;
if ( dlg.DoModal() == IDOK ) {

// The user clicked OK; do something !
}

36

Dialog Data Exchange (DDX)
A convenient way to expose the input from a dialog, is to map 
the control to a public member variable.

MFC’s DoDataExchange() uses DDX macros to transfer data 
between dialog’s controls and data members.

void CMyDialog::DoDataExchange(
CDataExchange* pDX){

DDX_Text (pDX, IDC_NAME, m_strName);
DDX_Text (pDX, IDC_PHONE, m_strPhone);

}

Linking two CString data members to edit controls.
The pDX argument is a pointer to a CDataExchange object.

Note: The linkage is only during entry and exit of the dialog.



37

DDX Functions

Associates a CString variable with a list box.DDX_LBString

Associates a CString variable with a list box.DDX_LBStringExact

Associates an int variable with a group of radio 
buttons.

DDX_Radio

Associates an int variable with a check box 
control.

DDX_Check

Associates a BYTE, an int, a short, a UINT, a 
long, a DWORD, a CString, a string, a float, a 
double, a COleDateTime, or a COleCurrency
variable with an edit control.

DDX_Text

DescriptionDDX Function

38

Dialog Data Validation (DDV)
DDV allows MFC to validate the values entered into a dialog’s 
control before the dialog is dismissed.

The validation falls into two categories:

• Validate numeric variables so they fall within specified limits.

• Validate CString variable length to a certain limit.

void CMyDialog::DoDataExchange(
CDataExchange* pDX){

DDX_Text (pDX, IDC_COUNT, m_nCount);
DDV_MinMaxInt (pDX, m_nCount, 0, 100);

}

The DDV function call should immediately follow the DDX.



39

DDX and DDV from ClassWizard
ClassWizard can help in the addition of DDX and DDV’s.

To add a DDX or DDV to a dialog box:

• Enter the Member Variable tab in the ClassWizard window.

• Select the dialog class’s name in the Class Name box.

• Highlight the desired ID of the control, and click the Add 
Variable button.

• Type the member variable name and select the varibale type 
in the Add Member Variable dialog box.

• For numeric and string variables limiting, just add restrictions.

ClassWizard can be activated with Ctrl-W.

40

Interacting with other controls
It is possible to get a CWnd pointer to any control in a dialog 
box.

MFC’s DDX_Control function offers this capability.

DDX_Control(pDX, IDC_LIST, m_wndListBox);

Now adding strings to the list box is a simple:

m_wndListBox.AddString(_T(“One”));

Using ClassWizard to add DDX_Control is similar, with the 
difference of choosing Control instead of Value in the Add 
Member Variable dialog box.



41

Common Dialogs

Font dialog boxes.CFontDialog

Windows provides standard implementation of several common dialog 
boxes. MFC provides C++ interface to these classes.

Find and Replace dialog boxes.CFindReplaceDialog

Color dialog boxes.CColorDialog

Page Setup dialog boxes.CPageSetupDialog

Print and Print Setup dialog boxes.CPrintDialog

Open and Save As dialog boxes.CFileDialog

Dialog Type(s)Class 


