eXtreme Programming

N1DIN '0P'IND NIN'S7 N AIATINN

TN NMIR A"
[1'1D0N ,D'VTNNI NAI71100N NRIINT NR7NNN
oritha@techunix.technion.ac.il

" S
eXtreme Programming
N1JIN '0P"NS NIN'S7 NAIZITINN

m What is eXtreme Programming

m \Why eXtreme Programming?

Social analysis

Cognitive analysis

" S
eXtreme Programming
N1JIN '0P"NS NIN'S7 NAIZITINN

-NDIN NIN'S2 DI'A TY D21I'01) ']YJO-'?D O

NNRYOXNA NI'HOINN NiYYan |

?010IN 'VP'NO

/A
\\
1\

" JE
Problems in software development

m Google: "problems with software development”
Requirements are complex
Clients usually do not know all the requirements in advance
Requirements may be changing
Frequent changes are difficult to manage
Process bureaucracy (documents over development)
It takes longer
The result is not right the first time
It costs more

Applying the wrong process for the product

" S
N1DIN 'VP" N 7Y NI'OXN NI'V]

N AN NIN'SDA N'N'NKXRN NIDIRA'ON
(*ar71mmoun xX71) '"YIIRN VA'N]

N12N ,0'ANA L1 DTNY-'REYING 7717 ,NINIpY =
QIN'Y-IX NIX 2N "2 MIYEN ,NINDIN Y

... ,NYMNAVIN ,UT'N

Size of project

1 function point

10 function points

100 function points
1,000 function points
10,000 function points
100,000 function points
Average

Early
14.68%
11.08%

6.06%

1.24%

0.14%
0.00%
5.53%

On-Time

83.16%
81.25%
14.77%
60.76%
28.00%
13.67%
56.94%

Delayed
1.92%
5.67%

11.83%
17.67%
23.83%
21.33%
13.71%

Cancelled

0.25%
2.00%
7.33%
20.33%
48.00%
65.00%
23.82%

Table 1: Percentage of projects early, on-time, late, canceled

(from Patterns of Software Systems Failure and Success, by Capers Jones)

DN .AIN 'U'IND

Sum
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

DN .AIN 'U'IND

D'AWN) NINR77 0'n7wIAn 0'217a0 N1DINN ximn 75%
NIYT? D''RNN DI'XY IX 77D UIin'wa DIRY IX [|17WD)D

M hihah!

Based on: Mullet, D. (July, 1999). The Software Crisis, Benchmarks Online - a monthly

publication of Academic Computing Services 2(7).

-1 NIV 702 NTNNI A"AINA N1DINA DN 7Y DA NIT7Y

$ i*'va 59.5

The National Institute of Standards and Technology (NIST), New Release of June 28, 2002.

$ "7 200 naoima 2a"nxa wpwin 2003 v Q2 -2 axnwn DWUY =

"
Economics of
software development

— cost of change

" I
What if...

— cost of change

—

"
What is eXtreme Programming

N"YYNn1 nnny exXtreme Programming =

m Differences from traditional methodologies

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom
m 12 practices
m 4 values: feedback, simplicity, communication, courage
m The meaning of ‘eXtreme’

m Optimum: teams up to 12 developers; can be adjusted

to bigger teams. 0

DWUN 1IN

D'N{71 D"AVPOND 172NNY NI'INIMIDDIY B
NINIX'?7

& & & & & &
NI T2 Bl N'¥IA0I'N 21wnN NMIYPN [NIVYOS YNIX

11

Why XP?

m Survey:
31 XP/Agile-methods early adopter projects
14 firms
Findings:
m Cost reduction: 5-7% on average

m [ime to market compression: 25-50% reduction

This datum will be explained later

12

Why XP?

m big companies using XP in at least some capacity
Ford Motor, Chrysler, IBM, HP
m smaller software houses:

Mayford Technologies

RoleModel Software

m tutorials: Industrial Logic, Object Mentor

13

"
Project Timetable: 1 release - 3 iterations
(2 months - 9 weeks)

Business Day Business Day

Release 2
starts

Business Day

. 14
Business Day

Q'O

0O 4 7V nNNYIM NAIRITInNNn
(feedback) alun =

(Simplicity) nivwo =
(Communication) niiwyn =
(Courage) ynix =

m NN N'nim 12 2 0'xvinn 17X 0Dy
D'A10 YN NTIAY

15

Business Day

m On-site customer
m Planning game

m Small releases

m Simple design

m Metaphor

Source: http://www.rolemodelsoftware.com/

16

Business Day — Reflection

m 5 practices (outof 12) ® Planning game

Planning game All developers participate
On-site customer All have the same load
Small releases All developers get an

_ _ overview of the entire
Simple design development process
Metaphor Simple means

Very detailed

Levels of abstraction
17

Business Day — Reflection

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

m On-site customer
Customer’'s on-going
feedback

m Small releases

On-going opportunity to
update/change
requirements

18

Business Day — Reflection

m 5 practices (out of 12)
Planning game
On-site customer
Small releases
Simple design
Metaphor

m Simple design

Develop only what is
needed for your
development task

m Metaphor

Bridges customers-
developers-business gaps

19

Development Day

Source: http://www.rolemodelsoftware.com/

Iaf TR
Pair programming

Test driven development (acceptance, unit-test)
Code standards

Refactoring

Simple design

Continuous integration (one integration machine)
Collective ownership

Sustainable pace (40-hour week)

20

"
N TIAYyn N1'a0

21

" I
Development Day - Reflection

m The development environment

All see all; fosters communication

m Stand-up meeting
All know what all do
m Pair programming
Each task is thought on two levels of abstraction
m Unit test (automatic test first)
First: improves understanding; Automatic: testing is easy
Developers program and test

Testing becomes manageable
Success vs. failure

22

Development Day - Reflection

Continuous integration

Reduces integration risks in later stages

Collective ownership

Important in companies with high turnover
Coding standards

Refactoring and simple design

Code improvement is part of the methodology (though it doesn't
produce code), gradual process

Sustainable pace (40-hour week)

Intense and productive work, developers are not tired

23

Development and Business Days — Reflection

Code/Technical
Perspective

Human/Social
Perspective

Refactoring

Simple design

Coding standards
Testing

Continuous integration
Small releases

Collective ownership
Pair programming
Sustainable pace
On-site customer
Planning game
Metaphor

24

"
The 12 XP practices

ON-3018 Cus.‘mmm

/‘\

METAPHOK

PlAHMINqLGkME
40 HovRWEEK

I SHORT RELEASES
TESTiNg*™ s

{}bu:m.. STANDARDS

“« T

Collective OWNERSHip <= = Conmnuydvs TNTFGR ATON

FIGURE 4. The practices support each other

Note:

nothing is new;
gathering the
practices
together is XP
uniqueness

Source: Beck, K. (2000). eXtreme Programming explained, Addison Wesley.

25

"
What is eXtreme Programming

m Differences from traditional methodologies

All developers are involved with requirements-design-code-testing

Emphasis on people vs. development activities & schedule

XP specifies how to behave; still leaves freedom and place for creativity

m The meaning of ‘eXtreme’

m 12 practices

m 4 values: feedback, simplicity, communication, courage

26

"
What is eXtreme Programming

m Agile Software Development Methodology

Other agile methods: SCRUM, Feature Driven
Development, DSDM

All acknowledge that the main issue of software

development is people: customers, communication

m Manifesto for Agile Software Development:

http://agilemanifesto.org/

m eXtreme Programming: Kent Beck, 1996, Chrysler

27

Why XP?
m You do not do XP to save money;

However, XP shortens time to market

m XP is a mature software development

method

28

Why XP?

m Survey:.
31 XP/Agile-methods early adopter projects, 14 firms
Findings:

m Cost reduction: 5-7% on average

m [Ime to market compression: 25-50% reduction in

time

29

Why XP? — Analysis

m Shorter development period:

Code is easy-to-work with:
m less bugs: unit tests
m code is more readable & workable (invest now to gain benefits
later):pair programming, refactoring, coding standards
Development is manageable and controlled:

m accurate estimation: small releases

m meets customer needs: customer on-site, planning game,

acceptance tests 30

Why XP? — Analysis
m Shorter development period (cont):

Knowledge sharing, if one leaves everything continues

as usual: pair programming, collective ownership

Production is increased: pair programming (work all the time),

sustainable pace

Cost for requirements change/update/elaboration is

CONSTANT: simple design, planning game (redundant features

are not added by customer and developers)

31

Why XP?

Barry W. Boehm (1981). Software Engineering Economics,

Englewood Cliffs, N.J.: Prentice Hall.

63 software development projects in corporations such as IBM.

Phase of requirement change Cost Ratio
Requirements 1
Design 3-6
Coding 10
Development testing 15-40
Acceptance testing 30-70

Operation 40-1000

32

Why XP?

m Under the assumption that “the later a requirements is
iIntroduced the more expensive it is”, customers (and

developers) try to make a “complete” list of requirements.

m Under the assumption that “cost for introducing an update in
the requirements is constant”, customers (and developers)
do not assume what the customer will need and develop

exactly and only what is needed.

33

Why XP?
m You do not use XP to save money;

However, XP shortens time to market

m XP is a mature software development

method (at least CMM level 3)

34

XP in Practice: Conceptual Changes

m XP encourages:
Cooperation (vs. knowledge-is-power)
Simplicity (vs. habit-of-high-complexity)

Change in work habits

35

v
P 4 " Extreme Programming Project

Extreme Programming

User Stores Mewr User Story
wfmems FProjectVelocity Bugs
G;D fl;st\ Customer

Test Scenarios

. =y sterm ;
Archlt?;cturﬂlmetaphur . REIEEES': Plan Itﬂrﬂtiﬂﬂ VEFSIDHFAccﬂPtHI]CE Anproval Sﬂlﬂll
Spike Planning @ & Tests Releases
LIncertain Confident Mext [teration
Estimates Estimates
Spikﬂ Capynght ZHEN] Donvan Wells

36

v "'1] -
» 4 = , Planning/Feedback Loops &zeomou
Eutr‘#ﬁ Programming RE]EESE Plﬂﬂ

Maonths
Iteration Plan

Wepks
Acceptance Test
Diays
Stand Up Meeting

One Day

Pair Negotiation

Hnursj

Unit Test

Minutei/

Pair Programming

Code

Coparight 2001 J. Donovan Wells

AP
P 4 " 4 [teration @goom out

Extreme Frogramiming

New User Story,
Release Project Velocity
Plan | +
User Stories LInfinished Tasks Learn and
m Communicate
I iy
Froject i lteration Functionality
Next velocty Iteration Plan__ Devel t ——— s Latest
. . CYVEe10pIN 1l i .
Iteration Planning _ P - BUIFHES w» Yersion
-.H
Failed Acceptance @“
Tests
Day by Day
Eugs Capynght 200). Doavan Wells

38

w _"‘1
P 4 - | Development &Zoom out
.
Extrame Frnurarnmlh{i
Learn and
Communicate
UﬂﬁﬂlShEd Fair Programiming
Tteration Tasks Refactor Mercilessly New
PIEIII Tao Much fove Feople Around . .
Share
Tasks LCSR SR Cards /fFunctmnallt}F
. 100% Unit
| Meeting MextTask | Code Ownership
Failed Acceptance m\ ar Failed
TEV' - Acceptance Test) Accepm‘
Test Fassed Bu FiI{ES
DH-'F b}i" Da’};r Copynght 200). Dosvas Wells g

39

v ‘1
P 4 - Collective Code Ownership @gZoom out
.
Extreme Frnummmm{:
Move People
CRC
Card Around 100%
Simple o I Uﬂit
Diesign Change Ve Tests
- orplen Pair| |Meed Passed
Problem ailad Help Run All Unit /
Next Task par Cpeate Unt v New Uit TESTS/‘
] U _ Test " BslS i Fun
or Failed g Unit e— Pair _.,_PCnntmu-_:-us Failed
Acceptance Test @ oot Programming new Integration |acceptance
Test {Q\ Toct Functionality Test
Simple Complex \
Code Code
Acceptance
¥ Test
Refz_:wtnr Paszed
Copvright 2006], Diomvan Wells MEI‘EIIESSI}F

40

" S
A Day in the Life...

Standup Meeting @ 2AM

Y
Pair Up

'

Test =

N

Code —™ Refactor

/

Integrate or Toss

'

Go Home @ 5PM

> Q&A

41

" JE
Why XP? — Cognitive and Social Analysis

J'NaN NV VAN NTIPM XP nin =
Game Theory: Prisoner’s Dilemma

Learning Theory: Constructivism

42

